Crystallization, Separation, Extraction, and Quantification on a Microfluidic Platform

No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The primary focus of the thesis is to explore, design and develop a microfluidic platform for the efficient resolution of enantiomers, surfactant separation, dye extraction, and Hemoglobin quantification. A flexible μ-reactor and a μ-crystallizer are fabricated for the continuous production of diastereomer salt crystals from racemic α-phenylethylamine (I) where optically active L-(+)-tartaric acid (II) is used as a resolving agent. Moreover, a Y-shape microchannel was fabricated and thin copper sheet electrodes were placed across the channel to separate both anionic and cationic surfactant simultaneously from its mixture under the influence of ultra-low electric voltage. It was found that separation efficiency solely depends on the residence time of the fluid. Furthermore, liquid-liquid extraction was investigated to transfer a component transfer from one liquid phase to another liquid phase under the presence of an applied external electric field in a microchannel. With this, we explored interfacial instability in the presence of an external electric field inside the microchannel for the extraction of methylene blue dye from the aqueous phase using N-amyl alcohol. Additionally, we attempt to develop a simple, low-cost, easy to use point of care (PoC) device based on the spectrophotometric principle for the quantification of Hemoglobin (Hb) on a microfluidic platform. The specific interactions of Methylene Blue (MB) with Hb in the presence of CDs show a unique characteristic optical feature, and the same is exploited for the quantitative estimation of Hb.
Description
Supervisor: Pattader Partho Sarathi Gooh
Keywords
Citation