Trace Formulas and Finite Dimensional Approximations

dc.contributor.authorPradhan, Chandan
dc.date.accessioned2023-09-12T11:40:06Z
dc.date.accessioned2023-10-20T12:31:15Z
dc.date.available2023-09-12T11:40:06Z
dc.date.available2023-10-20T12:31:15Z
dc.date.issued2023
dc.descriptionSupervisor: Chattopadhyay, Arupen_US
dc.description.abstractThe dissertation gives a new proof of some existing second-order trace formulas, namely the Koplienko-Neidhardt trace formula for pair of unitaries in the multiplicative path, the Koplienko-Neidhardt trace formula for pair of contractions via linear path with one of them being normal. Our proofs are based on the idea of the finite-dimensional approximation method introduced by Voiculescu. As a consequence of our results and the Schaffer matrix unitary dilation, we obtained second-order trace formula for a class of pairs of contractions via linear path. Using a different setup of finite dimensional approximations, we extend the Koplienko-Neidhardt trace formula for a class of pairs of contractions via multiplicative path.en_US
dc.identifier.otherROLL NO.186123006
dc.identifier.urihttps://gyan.iitg.ac.in/handle/123456789/2455
dc.language.isoenen_US
dc.relation.ispartofseriesTH-3167;
dc.subjectSchatten p-classen_US
dc.subjectTrace Formulae in Pertubation Theoryen_US
dc.subjectSpectral Shift Functionen_US
dc.subjectDouble Operator Integralsen_US
dc.subjectSchaffer Matrix Unitary Dilationen_US
dc.titleTrace Formulas and Finite Dimensional Approximationsen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Abstract-TH-3167_186123006.pdf
Size:
198.02 KB
Format:
Adobe Portable Document Format
Description:
ABSTRACT
No Thumbnail Available
Name:
TH-3167_186123006.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
THESIS
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: