Dyanimcs of the wake behind an oscillating and rotating sphere in uniform flow

dc.contributor.authorPeter, Simon
dc.date.accessioned2019-07-12T12:12:14Z
dc.date.accessioned2023-10-26T09:42:10Z
dc.date.available2019-07-12T12:12:14Z
dc.date.available2023-10-26T09:42:10Z
dc.date.issued2016
dc.descriptionSupervisor: Arnab Kumar Deen_US
dc.description.abstractThe primary objective of the current research is to reveal the wake dynamics of a simultaneously oscillating and rotating sphere in uniform incompressible flow. To achieve these objectives, an in-house code incorporating: Finite volume method, non-staggered arrangement of variables, non-uniform cartesian grid, non-inertial frame of reference, distributed memory allocation parallelization, ghost-cell immersed boundary method (GCIBM), SIP preconditioned BiCGSTAB linear solver is employed. The parameters employed for only oscillating sphere in uniform flow are: Reynolds number (Re=300), normalized oscillation amplitude (A=0.5) along the transverse direction and frequency ratio (0.16≤fR≤1.3). Effects of simultaneous rotation on an oscillating sphere are considered at normalized angular velocity (α=1.2) along the three primary directions (x, y, z) at fR=1.3 and 0.8. Time signals of the force coefficients their frequency spectra, instantaneous vorticity and wake structure are analysed to reveal the underlying physics. Following may be considered as the contributions: 1) enhancing the capabilities of a previously reported GCIBM, 2) revealing two forcing mechanisms with their impact on energy transfer for forced oscillation of a structure in uniform flow, 3) finding similarity between the wake modes for forced and free oscillation of a sphere in uniform flow, 4) observing different flow features for simultaneous oscillation and rotation of a sphereen_US
dc.identifier.otherROLL NO.09610312
dc.identifier.urihttp://172.17.1.107:4000/handle/123456789/1192
dc.language.isoenen_US
dc.relation.ispartofseriesTH-1769;
dc.subjectMECHANICAL ENGINEERINGen_US
dc.titleDyanimcs of the wake behind an oscillating and rotating sphere in uniform flowen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Abstract-TH-1769_09610312.pdf
Size:
113.82 KB
Format:
Adobe Portable Document Format
Description:
ABSTRACT
No Thumbnail Available
Name:
TH-1769_09610312.pdf
Size:
15.3 MB
Format:
Adobe Portable Document Format
Description:
THESIS
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: