Spherical Mean On Metivier Groups And Uniqueness Results For Quaternion Weyl Transform

dc.contributor.authorDalai, Rupak Kumar
dc.date.accessioned2022-08-12T10:55:54Z
dc.date.accessioned2023-10-20T12:30:59Z
dc.date.available2022-08-12T10:55:54Z
dc.date.available2023-10-20T12:30:59Z
dc.date.issued2022
dc.descriptionSupervisor: Rajesh Kumar Srivastavaen_US
dc.description.abstractIn this thesis, the spherical mean of the metivier group is considered and we characterize the spherical harmonic coefficients of certain functions in terms of polynomial growth by which we infer a support theorem. Additionally we study the injectivity of the spherical mean for continuous functions in the metivier group. Further we study the boundedness and uniqueness of quanterion Weyl transform (QWT). Then we obtain an analogue of the benedicks Amrein-Berthier theorem for QWT.en_US
dc.identifier.otherROLL NO.156123020
dc.identifier.urihttps://gyan.iitg.ac.in/handle/123456789/2134
dc.language.isoenen_US
dc.relation.ispartofseriesTH-2678;
dc.subjectMATHEMATICSen_US
dc.titleSpherical Mean On Metivier Groups And Uniqueness Results For Quaternion Weyl Transformen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Abstract-TH-2678_156123020.pdf
Size:
242.5 KB
Format:
Adobe Portable Document Format
Description:
ABSTRACT
No Thumbnail Available
Name:
TH-2678_156123020.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
THESIS
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: