Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups
dc.contributor.author | Giri, Deb Kumar | |
dc.date.accessioned | 2018-06-01T05:28:32Z | |
dc.date.accessioned | 2023-10-20T12:30:45Z | |
dc.date.available | 2018-06-01T05:28:32Z | |
dc.date.available | 2023-10-20T12:30:45Z | |
dc.date.issued | 2018 | |
dc.description | Supervisor: Rajesh K. Srivastava | en_US |
dc.description.abstract | We explored the Heisenberg uniqueness pairs corresponding to the spiral, hyperbola, circle, cross, exponential curves, and surfaces. Then, we prove a characterization of the Heisenberg uniqueness pairs corresponding to four parallel lines. We observe that the size of the determining sets for X depends on the number of lines and their irregular distribution that further relates to a phenomenon of interlacing of the zero sets of certain trigonometric polynomials. | en_US |
dc.identifier.other | ROLL NO.136123005 | |
dc.identifier.uri | https://gyan.iitg.ac.in/handle/123456789/978 | |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | TH-1723; | |
dc.subject | MATHEMATICS | en_US |
dc.title | Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups | en_US |
dc.type | Thesis | en_US |
Files
License bundle
1 - 1 of 1