Uniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groups

dc.contributor.authorGiri, Deb Kumar
dc.date.accessioned2018-06-01T05:28:32Z
dc.date.accessioned2023-10-20T12:30:45Z
dc.date.available2018-06-01T05:28:32Z
dc.date.available2023-10-20T12:30:45Z
dc.date.issued2018
dc.descriptionSupervisor: Rajesh K. Srivastavaen_US
dc.description.abstractWe explored the Heisenberg uniqueness pairs corresponding to the spiral, hyperbola, circle, cross, exponential curves, and surfaces. Then, we prove a characterization of the Heisenberg uniqueness pairs corresponding to four parallel lines. We observe that the size of the determining sets for X depends on the number of lines and their irregular distribution that further relates to a phenomenon of interlacing of the zero sets of certain trigonometric polynomials.en_US
dc.identifier.otherROLL NO.136123005
dc.identifier.urihttps://gyan.iitg.ac.in/handle/123456789/978
dc.language.isoenen_US
dc.relation.ispartofseriesTH-1723;
dc.subjectMATHEMATICSen_US
dc.titleUniqueness of the Fourier transform on the Euclidean spaces and certain locally compact Lie groupsen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Abstract-TH-1723_136123005.pdf
Size:
142.86 KB
Format:
Adobe Portable Document Format
Description:
Abstract
No Thumbnail Available
Name:
TH-1723_136123005.pdf
Size:
4.33 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: