Fractal Dimensions and Approximations of Fractal Interpolation Functions

dc.contributor.authorAkhtar, Nasim
dc.date.accessioned2017-08-10T07:25:58Z
dc.date.accessioned2023-10-20T12:30:42Z
dc.date.available2017-08-10T07:25:58Z
dc.date.available2023-10-20T12:30:42Z
dc.date.issued2016
dc.descriptionSupervisor: M. Guru Prem Prasaden_US
dc.description.abstractA fractal set is a union of many smaller copy of itself and it has a highly irregular structure. Using Hutchinson's operator, Barnsley [6], introduced Fractal Interpolation Function (FIF) via certain Iterated Function System (IFS). The FIF is continuous and self-a ne in nature. By de ning IFS suitably, one can construct various form of fractal functions including non-self-a ne and partially self-a ne (and partially non-self-a ne) FIFs. For any continuous function f, the corresponding fractal analogue f is non-selfa ne, continuous, nowhere di erentiable function [62,63].en_US
dc.identifier.otherROLL NO.11612310
dc.identifier.urihttps://gyan.iitg.ac.in/handle/123456789/822
dc.language.isoenen_US
dc.relation.ispartofseriesTH-1574;
dc.subjectMATHEMATICSen_US
dc.titleFractal Dimensions and Approximations of Fractal Interpolation Functionsen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
TH-1574_11612310.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: