Estimation of parameters in conduction-radiation heat transfer in Porous media

dc.contributor.authorMishra, Vijay Kumar
dc.date.accessioned2018-05-30T06:09:19Z
dc.date.accessioned2023-10-26T09:45:18Z
dc.date.available2018-05-30T06:09:19Z
dc.date.available2023-10-26T09:45:18Z
dc.date.issued2016
dc.descriptionSupervisors: Subhash C. Mishra and Dipankar Narayan Basu
dc.description.abstractDevelopment of thermal systems like a porous radiant burner, heat exchangers, insulations, etc., quantitative knowledge of heat and/or mass transfer, temperature field are essential. With geometric details, thermo-physical and optical properties, and initial and boundary conditions known, the desired results, viz., temperature and heat flux distributions are known by numerically solving a set of governing equations. However, when a thermal system is designed, a priori knowledge of some or all of the geometric parameters, and thermos-physical and optical properties of the material, and even initial and/or boundary conditions may not be known. Experimental route to optimize these parameters with trial and error approach for the desired outcome is not scientific. Recourse of an inverse analysis is the most preferred option by the scientific community. With thermo-physical properties and initial and boundary conditions known, calculations of the desired velocity field, temperature field or heat and mass flow rates, come under solving a direct problem. However, when either of the desired quantities (temperature, velocity fields, heat and mass transfer rates), and one or more of the properties or initial or boundary conditions are unknown, problem becomes an inverse one. In the direct problem, causes are known, and getting the outcomes are straightforward. On the contrary, in inverse problems, the outcome is known, but not the cause(s). Estimation of cause(s) is relatively, a difficult task. Mathematically, inverse problems are ill-posed. With even a slight variations in governing parameters, solution goes astray.en_US
dc.identifier.otherROLL NO.126103034
dc.identifier.urihttps://gyan.iitg.ac.in/handle/123456789/952
dc.language.isoenen_US
dc.relation.ispartofseriesTH-1697;
dc.subjectMECHANICAL ENGINEERINGen_US
dc.subjectMECHANICAL ENGINEERING
dc.titleEstimation of parameters in conduction-radiation heat transfer in Porous media
dc.typeThesis
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Abstract-TH-1697_126103034.pdf
Size:
96.02 KB
Format:
Adobe Portable Document Format
Description:
Abstract
No Thumbnail Available
Name:
TH-1697_126103034.pdf
Size:
9.23 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: