Cyanobacteria based photosynthetic microbial fuel cell : Development and application for sensing alcohol

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
The major objective of the present study is to develop an efficient photosynthetic microbial fuel cell (PMFC) using cyanobacteria as anodic catalyst with a further aim of utilizing this energy generating device for sensing applications. One of the key issues to make the bacterial catalysts effective for generating power in microbial fuel cell is the proper electrical communications between the bacterial cells and the conductive electrode of the fuel cell device. We proposed the direct electron transfer (DET) as the guiding principle for channelizing the cellular electrons to the anode for which, setting up of cyanobacteria biofilm on the anode was considered as a suitable strategy to comply the principle. We explored different synthetic and natural polymeric thin films for their rapid biofilm promoting abilities of cyanobacteria, Synechococcus sp. For a comparative analysis, the study was extended to two commonly available bacteria, namely, Escherichia coli and Lactobacillus plantarum. The activating role of different polymer thin films coated over polystyrene support on the Synechococcus sp. biofilm growth was examined concurrently by measuring biofilm florescence using a dye and by measuring cell density in the isolated biofilm. Compared to blank (no coating), the increase in biofilm formation (%) on silk, chitosan, silk-chitosan (3:2) blend, polyaniline, osmium, and Nafion films were 27.73 (31.16), 21.55 (23.74), 37.21 (38.34), 5.35 (8.96), 6.70 (6.55) and (nil), respectively with corresponding cell density (%) shown in the parentheses.
Supervisor: Pranab Goswami