Ultrafast Modifications of Graphitic Carbon Nanostructures and Nanohybrids for Energy Storage and Catalysis
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis introduces transient Joule heating (TJH) as a novel, ultrafast, energy-efficient, and cost-effective strategy for synthesizing advanced materials critical for a clean and sustainable energy future. By employing millisecond current pulses, TJH overcomes the limitations of traditional high-temperature, time-consuming material processing. The research demonstrates TJH’s versatility across two key applications: rapid fabrication of high-performance supercapacitor electrodes, such as multimodal porous graphene and MOF-derived porous graphitic nanoleaves, which yield high areal capacitance and energy density for robust symmetric and flexible solid-state supercapacitors suitable for wearable electronic devices. Additionally, TJH facilitates the precise synthesis of efficient electrocatalysts for hydrogen evolution reaction (HER) through a two-step process involving transient electro-graphitization (TEG) and thermal shock. This results in superefficient ruthenium (Ru)-based catalysts (e.g., ultrasmall amorphous Ru nanoclusters) and highly active, low-cost earth-abundant transition metal catalysts that exhibit state-of-the-art HER performance with low overpotentials and exceptional durability. Ultimately, this work establishes TJH as a transformative processing technique that significantly reduces thermal budgets and processing times, offers precise control over material properties, and maximizes atomic utilization of catalysts, providing a scalable and facile pathway for developing next-generation materials for energy storage and conversion applications.
Description
Supervisor: Maiti, Uday Narayan
Keywords
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as https://creativecommons.org/licenses/by-nc-sa/4.0/

