Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo

LBCL Repository

  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Martha, Subash Chandra"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Reflection and transmission of surface water waves by undulating bottom topography
    (2006) Martha, Subash Chandra
    The objective of this thesis is to investigate the scattering of a train of small amplitude harmonic surface water waves by small undulation of a sea-bed for both normal and oblique incidence. In this study of scattering, mixed boundary value problems are set up for the determi- nation of a velocity potential where the governing partial differential equation happens to be Laplace's equation in two dimensions for normal incidence and in three dimensions for oblique incidence within the fluid with a mixed boundary condition on the free surface and a condition on the bottom boundary. As the fluid domain extends to infinity, a far-field condition or an infinity condition arises to ensure uniqueness of the problem. Applying a perturbation analysis, which involves a small parameter Epsilon present in the representation of the small undulation of the sea-bed, directly to the boundary value problem the original problem is reduced to a simpler boundary value problem for the first order correction of the potential..
LBCL Digital Repository copyright © 2015-2023