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Abstract

This thesis aims to enhance the quality of the narrowband speech signal transmitted in

narrowband telephonic communication. The transmitted narrowband speech signal has fre-

quency components in the range of 300-3400 Hz. Original speech signal consists of significant

frequency components beyond this limit, making it easier to understand the speech signal, i.e.,

the speech quality and intelligibility are improved. Therefore, the received narrowband signal

at the receiver end in the narrowband telephonic communication can be enhanced by recovering

missing high-frequency components in the speech signal, typically in the frequency range 4-8

kHz. A process of recovering high-frequency components is known as an artificial bandwidth

extension (ABE) process. The ABE process improves speech intelligibility and quality. The

thesis proposes artificial bandwidth extension frameworks using the H∞ sampled-data control

theory and machine learning techniques. The performances of the proposed approaches have

been evaluated by using objective and subjective measures. Also, these measures are computed

for the two different datasets.

Keywords: H∞ sampled-data control theory, bandwidth extension, speech production

model, deep neural network modeling, modulation.
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1. Introduction

Objective

Artificial bandwidth extension (ABE) is an enhancement technique, which extends the band-

width of a signal. ABE technique is used in narrowband (NB) telephonic communication to

create new frequency components in the band from 3.4 kHz (or 4 kHz) to 7 kHz (or 8 kHz). In

narrowband telephonic communication, the bandwidth of the transmitted narrowband speech

signal sampled at 8 kHz is limited to 300-3400 Hz [2]. As a result, quality and intelligibil-

ity of the transmitted narrowband speech signal degrade. Therefore, the artificial bandwidth

extension technique can be applied to the received narrowband signal at the receiver side for

artificially regenerating the missing high-frequency components. It improves the perception

of the speech sounds. At present, the wideband (WB) speech services are provided, which

transmit the wideband signal sampled at 16 kHz. The transmitted wideband signal consists of

frequency components in the range of 50-7000 Hz. As a result, the speech quality and intel-

ligibility of the received wideband signal are perceived better. But, wideband speech services

require up-gradation of the terminal devices at both the ends (transmitting and receiving) and

transmission network. It is time-consuming and costly. Therefore, narrowband speech services

are used. ABE technique can be utilized in narrowband speech communication systems without

modifying the existing transmitter set-up and transmission network.

1.1 Artificial bandwidth extension

A general process is shown in Figure 1.1 for ABE. In Figure 1.1, ↑ 2 denotes an upsampler

with the upsampling factor 2, which is defined as

u[n] =




v[n/2], n = 0, 2, 4, 6, ...

0, otherwise
(1.1)

where v and u are discrete input and output, respectively. Estimation of the wideband signal is

performed in two main parallel processes at the receiver side. One is the high-band signal (at 16

kHz) reconstruction, and another is the narrowband signal (at 16 kHz) reconstruction, as shown

in Figure 1.1. The high-band (HB) signal reconstruction process includes narrowband features

2
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1.1 Artificial bandwidth extension

Narrowband signal (8 kHz)

NB feature

↑ 2 Lowpass filter
Resampled narrowband signal

extraction
Estimation of high-band feature
using a pre-trained model

Bandwidth extension process
Estimated high-band signal Estimated wideband signal (16 kHz)

High-band signal reconstruction (16 kHz)

Narrowband signal reconstruction (16 kHz)

Figure 1.1: A general block diagram of the artificial bandwidth extension technique used at the
receiver side.

(narrowband information) extraction, high-band features (high-band information) estimation

using a pre-trained model, and bandwidth extension process. The bandwidth extension pro-

cess needs the high-band features for estimating the high-band signal. The high-band features

have attributes of the high-band signal, which can not be obtained the same for all speech

sounds because of the non-stationary (time-varying) behavior of speech sounds [3]. This leads

to the need of numerous high-band features for reconstructing the full speech signal. There-

fore, the high-band features are estimated using modeling techniques. The fundamental idea

is to associate the narrowband features with the high-band features using a model designed

by machine learning technique. The model is trained using the narrowband features and cor-

responding high-band features which we call the pre-trained model. The model training is

an offline process. The non-stationary nature of speech sounds makes this high-band feature

estimation process a little challenging too. The narrowband features are computed using the

narrowband signal, which has characteristics of the narrowband signal. Only narrowband in-

formation is available on the receiver side; hence the pre-trained model helps in the estimation

of the high-band signal even though the high-band information is missing on the receiver side.

The estimated high-band features are used in the bandwidth extension process, which syn-

thesizes the high-band signal. The narrowband signal reconstruction process is relatively easy

and pretty standard. The narrowband signal (8 kHz) at the receiver end is resampled at 16

kHz. To this end, the narrowband signal is passed through the upsampler (↑ 2), followed by a

3
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1. Introduction

lowpass filter. The upsampling of the narrowband signal produces an unwanted mirror image

of the narrowband spectrum in the high-band region at the output. Hence, it is removed by

the lowpass filter. In the end, the wideband signal is reconstructed by adding the estimated

high-band signal and the resampled narrowband signal. Different ABE techniques explained in

following Section 1.2 mainly differ in narrowband features, high-band features, machine learning

modeling techniques, and bandwidth extension process.

1.2 Review of current ABE approaches

Many ABE approaches have been developed in which most of them are based upon the

speech production model (source-filter model) for speech production [4]. In the speech produc-

tion model, the speech signal is segmented into a speech production filter and a residue signal/

excitation signal. A speech signal is an output of the speech production filter driven by the

excitation signal. The speech production filter models the combined effect of the vocal tract

and the radiation at the lips, as well as the glottal pulse shape in the case of voiced sounds.

The excitation signal can be a white noise for unvoiced speech, a quasi-periodic impulse train

for voiced speech, or a combination of them. In both the cases, the magnitude spectrum of the

excitation signal is flat. Thus, the speech production filter consists of the spectral envelope of

the speech signal. Most of the ABE approaches typically use an all-pole model (autoregressive

model) to represent the speech production filter. The speech production filter and excitation

signal can be obtained using a linear prediction (LP) method [5, 6]. LP model has two main

processes: LP analysis and LP synthesis. In the LP analysis, the speech signal is decomposed

into the speech production filter and excitation signal using an LP analysis filter. In the LP

synthesis, the speech signal is reconstructed by passing the excitation signal through the speech

production filter (LP synthesis filter). The LP analysis filter is an inverse form of the LP syn-

thesis filter.

In ABE methods based on the speech production model, the high-band spectral envelope and

the high-band excitation of the wideband signal are estimated. The high-band excitation

can be estimated directly using the narrowband excitation. For this, the narrowband exci-

4
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tation is processed by a residual extension method. Several residual extension methods are

developed, such as spectral folding [7–9], spectral translation [7, 9–13], pitch adaptive modu-

lation [9, 11], bandpass-envelope modulated Gaussian noise (BP-MGN) [9, 14], and full-wave

rectification [7, 9, 15], which are explained as follows.

• In the spectral folding method, the narrowband excitation signal is up-sampled by a factor

of 2 for generating the high-band excitation signal. This method causes the spectral gap

around 4 kHz and does not preserve the harmonic structure in high-band.

• In the spectral translation method, the spectrum of the narrowband excitation signal is

shifted by a fixed modulation frequency, which yields the high-band excitation signal. It

can fill the spectral gap around 4 kHz by choosing the appropriate modulation frequency

but does not preserve the harmonic structure in high-band.

• In the pitch adaptive modulation method, the modulation frequency is adapted and cho-

sen in such a way that it is an integer multiple of the fundamental frequency of speech

(pitch). This method needs an accurate detection of the fundamental frequency. This

method preserves the harmonic structure in high-band but is sensitive to a small error in

pitch detection.

• In the full-wave rectification method, the high-band excitation is obtained by rectifying

the narrowband excitation sampled at 16 kHz. It maintains the harmonic structure but

needs to control the energy level of the synthesized excitation in high-band.

• In the bandpass-envelope modulated Gaussian noise (BP-MGN) method, the high-band

excitation is generated by modulating the bandpass-envelope with Gaussian noise. The

bandpass-envelope is extracted from the narrowband signal sampled at 16 kHz.

The high-band spectral envelope is varied for different speech sounds/phonemes because of

the time-varying behavior of speech sounds [3]. Therefore, it is estimated using the pre-trained

model. The design process of the pre-trained model requires high-band information (high-band

features) and corresponding narrowband information (narrowband features). These features

5
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can represent spectral envelope information. The high-band spectral envelope and the narrow-

band spectral envelope can be represented by the line spectral frequencies (LSF) [8,14,16], Mel

frequency cepstral coefficients (MFCC) [8], linear prediction coefficients (LPC) [10,12,17], and

linear frequency cepstral coefficients (cepstrum) [11, 13, 15] features. The high-band informa-

tion for given narrowband information is estimated using the pre-trained model. This model is

designed using machine learning techniques, for example, linear mapping approach [18], code-

book mapping approach like vector quantization (VQ) [10, 12, 19], and statistical modeling

approaches like Gaussian mixture models (GMMs) [20–24], hidden Markov models (HMMs)

with GMMs [13, 25–28], and deep neural network (DNN) topologies [13, 16, 29–32]. ABE ap-

proaches based on the speech production model have been developed using the combination of

residual extension method, spectral envelope representation, and spectral envelope estimation

method.

In [8], the bandwidth extension is implemented using the spectrum folding excitation ex-

tension method, MFCC features for the narrowband spectral envelope, LSF features for the

wideband spectral envelope, and VQ codebook approach. While in [18], both the narrowband

and high-band information are represented by the LSF features, and the linear mapping func-

tion is used to estimate the high-band LSF features. In linear mapping, four mapping matrices

are used for a better prediction of the high-band LSF features. These mapping matrices are

clustered using first two reflection coefficients of the narrowband speech signal [5].

In [19], the ABE framework consists of the bandpass-envelope modulated Gaussian noise

for excitation extension, the LSF features and lowpass energy prediction error for the nar-

rowband features, the LSF features and high-band gain for the high-band features, and the

VQ codebook approach. This ABE scheme focuses mainly on increasing the codebook map-

ping performance. The codebook mapping performance is enhanced using predictive codebook

mapping and optimal codebook interpolation. The predictive codebook mapping smoothes the

high-band features over time, which helps in the reduction of perceptually noise artifacts. The

optimal codebook interpolation improves the mapping performance.

In [10], the proposed ABE approach considers the spectral shifting excitation extension

6
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method, LPC features for the narrowband and wideband spectral envelopes, and VQ codebook

approach. The spectral shifting method was implemented using two fixed modulation frequen-

cies, 3.3 kHz and 4.7 kHz, with appropriate filtering to avoid overlapping. While in [12], a

fixed modulation frequency is chosen for estimating the high-band excitation signal extension.

Moreover, some additional narrowband information is taken as normalized short time energy

and gradient index. Finally, predictions of the wideband features from the VQ codebook are

enhanced by using a two-stage classification method. The normalized short time energy and the

gradient index indicate voiced and unvoiced sounds in a better way. The two-stage classification

method reduces artifacts in the synthesized wideband signal.

In [11], the high-band excitation is generated using the spectral translation method, which

uses the fixed modulation frequency of 3.4 kHz. The narrowband information is taken as auto-

correlation coefficients, zero-crossing rate, normalized frame energy, gradient index, kurtosis,

and spectral centroid. Zero-crossing rate, kurtosis, and spectral centroid characteristics help in

the better indication of the voiced and unvoiced sounds, plosive and vocal sounds, and fricative

sounds, respectively. The high-band spectral information is represented by the cepstrum fea-

tures and estimated by using the HMM with the GMMs model. The ABE approach proposed

in [13] is almost similar to the ABE approach proposed in [11] except some modifications. The

ABE approach is analyzed for the MFCC narrowband features apart from the auto-correlation

coefficients. The MFCC features perform better than the auto-correlation coefficients. The

modulation frequency has been chosen 8 kHz. The spectral floor suppression technique (SFS)

is used to control the synthesized energy in the high-band. Also, it helps in the suppression

of the noise artifacts synthesized in the estimated high-band speech signal. In [13], different

statistical models have been analyzed wherein the DNN model performs well.

The ABE approach proposed in [14] uses the BP-MGN excitation extension method, the

LSF features and pitch gain as the narrowband features, the LSF features and modulation

gain as the high-band features, and separate GMM models for estimating the LSF features and

modulation gain. The modulation gain is utilized to set the energy of the synthesized high-band

signal.

7
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In [15], the ABE approach is implemented using the full-wave rectification along with a

spectral whitening filter for the excitation extension, cepstrum features for the narrowband

and wideband spectral envelopes, and VQ codebook approach. The spectral whitening filter is

used to obtain the flat spectrum of the excitation.

The bandwidth extension in [25] is performed by using the spectrum folding method for

the excitation extension, the cepstrum features, normalized frame energy, and gradient index

as the narrowband features, the LPC features as the wideband features, and the HMM with

GMMs as a statistical model.

In [16], the proposed ABE framework uses the adaptive spectral double shifting technique

with an excitation synthesis filter for obtaining the wideband excitation signal, the LSF fea-

tures for the narrowband and wideband spectral envelopes, tilt filter, linear mapping matrix,

and DNN model. It uses two successive LP analysis filters for obtaining the narrowband

whitened excitation signal. The first LP analysis filter is applied to the narrowband speech for

producing the narrowband excitation. The second is applied to the narrowband excitation for

generating the narrowband whitened excitation signal. Further, the adaptive spectral double

shifting technique is applied to the narrowband whitened excitation signal for obtaining the

wideband whitened excitation signal. The wideband excitation signal is generated by passing

the wideband whitened excitation signal through an excitation synthesis filter. The wideband

excitation signal is fed to the tilt filter for reducing the over-energy artifacts. The excitation

synthesis filter is estimated using the linear mapping matrix.

A few strategies for ABE are different from the source-filter model. The ABE method

based on temporal envelope modeling is developed in [33]. In the temporal envelope modeling

(TEM), the speech signal is decomposed into a temporal envelope and a fine structure. The

temporal envelope represents the temporal energy contour. The fine structure represents rapid

fluctuations. The high-band signal is estimated using the temporal envelope modeling. The

high-band signal is derived by summing the sub-band signals for ABE. Each sub-band signal is

obtained by multiplying the temporal envelope with the fine structure. The temporal envelope

information of each sub-band is estimated using the GMM model, while the fine structure is

8
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directly estimated using the full-wave rectification method and narrowband signal. The tempo-

ral envelope modeling is used to achieve a better perceptual cue of the HB information. In [34],

the ABE approach is proposed based on sparse representation of speech signals. It employs

sparse coding over different dictionaries corresponding to voiced and unvoiced portions of the

input speech. The ABE approach proposed in [35] is based on the amplitude modulation and

frequency modulation (AM-FM) model. This model considers an AM-FM signal to represent

each speech resonance. The speech signal is expressed as the sum of N (finite integer) successive

AM-FM signals. A multi-band analysis scheme is used to isolate the AM-FM signals (resonance

isolation) of the speech signal. It uses a bank of band-pass filters centered at each spectral peak

(resonance) with an appropriate bandwidth for resonance isolation. The missing high-frequency

bands (high-frequency AM-FM signals) are estimated using an iterative adaptation algorithm

based on a least mean square error criterion.

Some ABE approaches directly estimate the high-band spectral information. In [36], the

log-spectral power magnitude is taken to represent the high-band and narrowband information.

At the same time, in [37], additional attributes such as MFCC, LSF, and band-pass voicing

coefficient (BPVC) are used to capture narrowband information. Further, the high-band spec-

tral magnitude information is estimated using the DNN model. The phase of the high-band

spectrum is obtained by imaging the phase of the narrowband spectrum. In [38], the spectral

magnitude is taken for representing the wideband and narrowband information. It uses a joint

dictionary training approach for ABE. In joint dictionary training approach, dictionaries for

the narrowband and wideband spectrograms are trained in a coupled manner, which capture

the sparsity of the narrowband and wideband spectrograms using the same sparse coefficient.

In [23], the constant Q-transform feature is used to represent narrowband and high-band in-

formation. The GMM model is used for predicting the high-band information. In [39], the

log-spectral magnitude represents the narrowband information, while the cepstrum features

represent the high-band spectral magnitude information. The phase for the high-band spec-

trum is obtained by shifting the phase of the narrowband spectrum. The DNN model is used

for predicting high-band information.

9
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1.3 Motivation, challenges, and our aims

The speech production model (SPM) is the most popular speech modeling used in speech

coding, speech synthesis, speech recognition, speaker recognition, and speaker verification be-

cause of providing a more accurate estimation of speech parameters. Therefore, we consider

this speech modeling scheme in our work. The spectral envelope is modeled using all-pole mod-

eling in existing methods based on the speech production model [13, 16, 17]. According to the

speech production theory, the spectral envelope (speech production filter) can be represented

accurately by a pole-zero model (signal model1) [40]. However, all-pole modeling may not be

sufficient to accurately represent envelopes of sounds like fricatives, nasals, laterals, and the

burst interval of stop consonants due to the presence of zeros in the frequency response of the

speech production filter [40]. In all-pole modeling, an invertible all-pole model (LP synthesis

filter) represents the speech production filter, which can be obtained by the linear prediction

(LP) method [5]. LP coefficients (LPC) representing denominator polynomial coefficients of the

all-pole model can be taken directly for training the model in a machine learning technique and

estimated directly. Also, the LP synthesis filter and the LP analysis filter are inverse to each

other. Therefore, the all-pole modeling is simple. But, the LP coefficients are highly sensitive

to the error obtained in their predictions [5]. Because error obtained in LP coefficients may

produce an unstable all-pole model. This problem is tackled by transforming LP coefficients

into LSF domain. In our work, we are going in a new direction where we obtain a stable

synthesis filter with utilizing pole-zero modeling.

This thesis aims to utilize pole-zero modeling for representing the speech production filter.

In pole-zero modeling, the analysis filter can not be directly obtained by inverting a causal and

stable synthesis filter. In the inversion process, zeros of the synthesis filter will be poles of the

analysis filter. Zeros lying outside of the unit circle of the synthesis filter makes the unstable

analysis filter. Also, we have restricted to have equal number of poles and zeros in the synthesis

filter. Therefore, we find a synthesis filter corresponding to an analysis filter by minimizing

the error e shown in Figure 1.2. In Figure 1.2, an error system is made by combining the

1In this thesis, terms signal model and pole-zero model are used interchangeably.
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A ↑ 2 K
SNB[n]

SWB [n
′
]

H1
SI [n

′
]
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′
]

H0

e

↓ 2
NBres

−
+

F
w

Figure 1.2: A general architecture of the error system.

transmitter set-up used for generating the narrowband signal, the bandwidth extension process

used for estimating a signal of interest on the receiver side, and the generation process of the

signal of interest. In Figure 1.2, the bottom part of the error system is a simplified model of

a general ABE process. At the transmitter side, the wideband signal SWB[n′] passes through

a low-pass filter H0 and downsampler ↓ 2 (by a factor 2). The resulting signal SNB[n] is the

transmitted narrowband signal. n and n′ are the sample indexes for 8 kHz and 16 kHz sampled

signals, respectively. The downsampler with the downsampling factor 2 is defined as

ψ[n] =y[2n], n = 0, 1, 2, 3, 4, 5.... (1.2)

where y and ψ are discrete input and output, respectively. At the receiver end, the received

signal SNB[n] (assuming no loss) passes through the LP analysis filter A, upsampler (by a

factor 2), and the (yet to be determined) synthesis filter K to reconstruct the signal of interest

SI . Three things are critical here. The first is the pole-zero model F of prior information.

Specifically, it contains the spectral envelope information of the wideband speech signal. w is

an input with know features (with finite energy, specifically w ∈ l2(Z,Rn). The second is the

generation process of the signal of interest SI [n
′], which is represented by the system H1. For

example, we may like to focus only on reconstructing the high-band. In that case, we can take

H1 as a high pass filter. However, if one would not like to lose the wideband focus, we can

take H1 as the identity. There are many such situations. In this thesis, we experimented with

three such signal interest conditions. The third thing is the design of unknown K. Solution

of the error system can be obtained using the methods explained in the H∞ sampled-data

control theory [41–45]. The sampled-data system usually means a hybrid system that contains

a combination of discrete-time (including multi rate systems) and continuous-time signals (see,

11
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e.g., [46]). In this thesis, we mainly consider multi-rate systems, which can be viewed as a

special case of a sampled-data system in a broad sense. Also, we use methods explained in

sampled-data control theory literature, especially the work of Nagahara and Yamamoto [47].

Therefore, we use the word sampled-data control often instead of any other term like discrete-

time control or multi-rate system. We use the results given in [47–51] for obtaining a solution.

For a quick summary of the sampled-data system theory, see Appendix A. The theory uses the

inter-sample information optimally using the lifting technique [47]. This theory is also used for

providing a robust solution in case of modeling uncertainties [52]. The robust solution provides

some protection against uncertain and unknown speech signals in practical scenarios [3].

Define

G :=



H1

H0


F =:



G1

G2


 (1.3)

We call G1 and G2 are the signal models (or pole-zero models). Depending upon the H1 and

H0, we have different types of signal models G1 and G2. In this thesis, three types of H1

are proposed. We have experimented with the three types of H0 also. Moreover, to have more

realistic scenarios, in the few experiments, we insert a speech codec block before the LP analysis

filter A, as given in [13,39]. This means adaptive multi rate (AMR) speech codec at 12.2 kbps.

See [39,53,54] for details.

The speech signal’s non-stationary nature does not allow the sampled-data system theory

to be used as it is. This is because the theory works only for the linear time-invariant (LTI)

system. It is well-known that the speech is stationary for the small duration of around 10-30

ms, and hence, we can obtain an LTI model. This means we will obtain a synthesis filter for

the small duration, which is not a desirable situation computationally and practically. To this

end, we propose to use regression to predict the synthesis filter. We have used machine learning

(esp. GMM/DNN) for this task.

12
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1.4 Contributions of the Thesis

Each contribution of the thesis is explained in subsequent chapters with sufficient details.

Here, we list down the significant contributions. As mentioned in the previous section, the

major contribution of this thesis is the formulation of the ABE problem as an extension of the

sampled-data system theory. The formulation part requires a lot of innovation to perform as

per the current standard. We now list the contributions provided in this thesis:

Chapter 2: A framework is developed for ABE using H∞ sampled-data system theory on a

simplified setup. This framework is the basis for the further chapters in this thesis. For sim-

plification, we drop the anti-aliasing low pass filter before downsampling, i.e., H0 = 1 in (1.3).

Hence, the narrowband signal generated at the transmitter is no longer perfect; it includes alias-

ing distortion. It is to note that the aliased narrowband signals may have less intelligibility, but

these are hypothesized to establish the better conditional dependence between narrowband and

wideband information. The full wideband signal is estimated by using a synthesis/interpolation

filter due to aliasing in the narrowband signal. Therefore, the proposed ABE approach consid-

ers the wideband signal modeling, i.e., H1 = 1 in (1.3). A signal model is used to represent

the wideband signal information. In this context, a novel error system is proposed by taking

the aliased narrowband signal generation process, bandwidth extension process, and reference

wideband signal. Further, solution of the novel error system is obtained using the methods

explained in the H∞ sampled-data system theory [41–45]. The solution is the synthesis filter,

which is used in the bandwidth extension process to estimate the full wideband signal. A large

number of synthesis filters are required to reconstruct the whole speech signal in a practical

scenario due to the fact that the speech signal is non-stationary. This problem is solved by using

the two statistical modeling approaches such as the Gaussian mixtures model and feed-forward

DNN. A drawback of this approach is not compatible with the existing transmitter setup.

Chapter 3: A new framework has been proposed for ABE using H∞ sampled-data system

13
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theory that works with the current technologies. We have followed the ITU-T standards com-

monly used by the literature for better comparison [39,53,54]. Specifically, we have work with

the band-limited narrowband (approximately 300-3400 Hz) signal encoded at 12.2 kbps [54],

i.e., H0 is the low pass filter in Figure 1.2. The proposed ABE approach considers wideband sig-

nal modeling. In this context, a signal model (pole-zero model) is used to capture the spectral

envelope information of the wideband (50-7000 Hz) signal. A novel error system is proposed

and built up by considering the narrowband signal generation process, bandwidth extension

process, and reference wideband signal generation process. This error system is designed for

taking the pole-zero information of a signal into account. Further, solution of the error sys-

tem is obtained by using the methods explained in the H∞ sampled-data system theory. The

solution of the error system is a synthesis filter, which is used in the bandwidth extension

process. The synthesis filter has the narrowband envelope information as well as the high-band

envelope information, but the narrowband envelope information is not needed. Therefore, the

narrowband information is suppressed in the synthesis filter. The energy of the estimated high-

band signal is controlled by using a gain adjustment technique and a spectral floor suppression

technique [13, 31, 55]. A large number of synthesis filters and corresponding gains are required

to reconstruct the whole speech signal in a practical scenario due to the fact that the speech

signal is non-stationary. This problem is solved by using a DNN model, which provides a kind

of compact form representing the information of synthesis filters and gains. The proposed ABE

approach extends the encoded narrowband signal for a realistic scenario [2, 56]. The standard

transmitter set-up (as described in [39, 53, 54]) is followed in this work. The error system is

also adapted according to the standards. Subjective and objective analyses are performed by

considering the two datasets using the DNN model.

Chapter 4: The major change in this chapter is to consider this high pass filter in the error

system for better optimization. We know that ABE aims to extend the bandwidth of the nar-

rowband (NB) speech signal (up to 4 kHz) to 8 kHz. In this chapter, a new ABE approach is

proposed based on high-band signal modeling, i.e., H1 is the high pass filter in Figure 1.2. In
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this context, a signal model is used to represent better the high-band (4-8 kHz) information of

a signal. A novel error system is proposed and made by considering the narrowband signal gen-

eration process, bandwidth extension process, and reference/true high-band signal generation

process. Solution of the error system is obtained by using the methods explained in the H∞

optimization (as in the earlier chapters). The solution of the error system is a synthesis filter for

the given signal model. The obtained synthesis filter has the high-band (HB) spectral envelope

information. The synthesis filter is used in the bandwidth extension process for synthesizing the

high-band (4-8 kHz) signal. The discrete Fourier transform (DFT) concatenation is performed

to add the narrowband signal sampled at 16 kHz and the estimated high-band signal sampled

at 16 kHz for removing the leaked information from the synthesis filter and non-ideal low pass

filter. Gain adjustment is performed on the estimated high-band signal to make its energy equal

to the true high-band signal. Non-stationary characteristics of speech signals generate assorted

variety in synthesis filters and corresponding gains. For this, a deep neural network (DNN) is

trained to estimate the synthesis filter and gain by using only the narrowband information. We

analyze the performance of the DNN model on two datasets. Objective and subjective analyses

are carried out on these datasets.

Chapter 5: In this chapter, we extend the ABE approach proposed in Chapter 4. The proposed

ABE approach is based on the mapped high-band signal modeling (shifting the high-band fre-

quencies in the narrowband region) and H∞ optimization. Further, an error system is proposed

for minimizing error in the case of mapped high-band signal modeling. The error system is built

up by combining the narrowband signal generation process, bandwidth extension process, and

reference signal generation process. The reference signal is then the mapped high-band signal

or band-pass shifted signal, which has the original high-frequency components shifted in the

narrowband region. A gain factor corresponding to the synthesis filter is computed and used

for adjusting the energy levels of the estimated high-frequency components. The spectral floor

suppression technique with slight modification [13] is utilized for controlling the noise artifacts

present in the estimated high-frequency components. Speech signals have time-varying charac-
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teristics. Therefore, several synthesis filters and corresponding gains are needed for constructing

the whole speech signal. Hence, two different deep neural networks (DNNs) are designed for

estimating the synthesis filter information and gain factor. We design separate DNN models

for modeling the synthesis filter and the gain factor. In addition, the gain factor is computed

and modeled in such a way that the gain factor reduces the performance loss obtained due to

error in the predicted synthesis filter.
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2. A new paradigm in artificial bandwidth extension

In this chapter, we are doing preliminary experiments to check the utility of H∞ sampled-

data system theory solution in speech signal enhancement. Many ABE techniques rely on the

common theme of decomposing the narrowband and high-band information (see [13, 16, 31]).

This is because only the high-band information is missing at the receiver. On account of the

decomposition of narrowband and high-band information at the transmitter, two challenges

arise for the effective ABE of the narrowband speech signal: (i) weaker conditional dependence

between narrowband and wideband specifically for the unvoiced frames of speech and (ii) need

to adjust of energy level between the estimated high-band and retained narrowband speech

signals [31, 55]. In different unvoiced frames of speech, narrowband information is almost the

same, while high-band details vary. Therefore, it isn’t easy to estimate the respective high-band

information for given narrowband information of the unvoiced frame. To tackle these challenges,

a new ABE framework is proposed in this work. The proposed work differs from the existing

works in three aspects. First, the narrowband signal generated at the transmitter is no longer

perfect. It includes aliasing distortion due to dropping the low pass filter before downsampling.

It is to note that the transmitted aliased narrowband signals may have less intelligibility, but

these are hypothesized to establish the better conditional dependence between narrowband and

wideband information. This is because high-band information is reflected in the narrowband

region after downsampling, which yields more variations among the narrowband features for

the unvoiced speech. Second, the interpolation filter of the speech signal is estimated by using

the H∞ optimization/filtering, which is recommended in the literature (especially in control)

to handle variations in system models (in our case, the pole-zero wideband signal model) [52].

Third, a large number of interpolation/synthesis filters are required to reconstruct the whole

speech signal in a practical scenario due to the fact that the speech signal is non-stationary.

This problem is solved by using the two statistical modeling approaches such as the Gaussian

mixtures model and feed-forward DNN model.

This chapter discusses the new ABE framework along with a practical method to use H∞

sampled-data system theory for artificial bandwidth extension. It is evident from the discussion

above that the proposed ABE approach is not suitable for the existing transmitter setup due
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2.1 A Proposed set-up based on wideband modeling for artificial bandwidth extension
of speech signals

to dropping of the low pass filter. This chapter is based upon these papers [57,58].

The remaining part of the chapter is organized as follows: Section 2.1 has a detailed discus-

sion about the proposed set-up for ABE. Section 2.2 consists of the experimental results and

analysis using the GMM and DNN models for the proposed method. Also, this section has

a comparison of the proposed method with the baselines. Section 2.3 concludes the proposed

work.

2.1 A Proposed set-up based on wideband modeling for

artificial bandwidth extension of speech signals

This section describes the proposed ABE approach for an aliased narrowband speech signal

sampled at 8 kHz. A basic block diagram for ABE is shown in Figure 1.1. As it can be observed

in Figure 1.1, a pre-trained model is needed in advance. The pre-trained model is designed

using a database of narrowband features and high-band features. The pre-trained model for the

proposed ABE framework is designed in the training block, as shown in Figure 2.1. The training

block is elaborated in Section 2.1.1. After designing the pre-trained model, ABE process uses

the pre-trained model at the receiver side, as shown in Figure 1.1. As evident from Figure 1.1,

the ABE process consists of four main processes: high-band features estimation, NB features

extraction, bandwidth extension process, and narrowband signal reconstruction process. These

processes are used in the estimation of wideband (WB) signal. However, the proposed ABE

approach does not use the narrowband signal reconstruction process. The extension block in

Figure 2.1 consists of a description of the proposed ABE approach for estimating the wideband

signal corresponding to the aliased narrowband signal. The extension block is explained in

Section 2.1.2.

2.1.1 Training block

The training block consists of three sequential processes: windowing and framing process,

features extraction process, and modeling process. The windowing and framing process is

performed to produce stationary speech signals, as explained in Section 2.1.1.1. The features
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WB Signal
Signal Model WB Feature extraction Modelling

↓ 2

YK

NB Feature extraction X

NB Signal

↑ 2

NB Feature extraction X Mapping

ỸK

K(z)
Estimated Wideband Signal

Windowing

Windowing

Training Block

Extension Block Inverted Window

and Framing

and Framing

Bandwidth extension process

Figure 2.1: Block diagram consists of training of a model and extension of the narrowband signal.

extraction process computes two features: wideband feature vector YK and narrowband feature

vector X. These features are computed in Sections 2.1.1.2 and 2.1.1.4. These features are

modeled using statistical models explained in Section 2.1.1.5.

2.1.1.1 Windowing and framing

It is a well-known fact that the characteristics of speech signals change with time (non-

stationary) [3]. Hence, speech signals are segmented into frames, and these frames are consid-

ered as stationary signals. Here, speech signals are windowed into frames of 25 ms duration

with 50% overlapping between adjoining frames using the Hamming window.

2.1.1.2 Wideband feature vector extraction

The wideband feature vector consists of the proposed synthesis/interpolation filter K in-

formation. Filter K is designed using the H∞ optimization. For designing filter K, an error

system is made by combining the wideband speech signal, narrowband generation process, and

bandwidth extension process, as shown in Figure 2.2.

↓ 2 ↑ 2 K

+

−
e[n′]y[n′]

yd[n] ŷ[n′]

Tx set-up

Bandwidth Extension Process

Figure 2.2: Error system set-up for reconstructing of a stationary speech signal.
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2.1 A Proposed set-up based on wideband modeling for artificial bandwidth extension
of speech signals

In Figure 2.2, y[n′] represents the wideband stationary speech signal, ↓ 2 is an ideal down-

sampler with the downsampling factor 2, ↑ 2 is an ideal upsampler with the upsampling factor

2, yd[n] denotes the aliased narrowband stationary speech signal, and e[n′] denotes the error

between the original wideband signal y[n′] and estimated wideband signal ŷ[n′]. n and n′ denote

8 kHz and 16 kHz sample index, respectively. The signal y[n′] is downsampled by a factor of 2

at the transmitter (Tx) side to produce the narrowband signal yd[n]. This narrowband signal

generation process introduces distortion (aliasing) in the narrowband speech signal. Hence,

our work is focused on estimation of the full wideband (0-8 kHz) signal at the receiver side.

It means the signal of interest is the wideband signal. The bandwidth extension process is

applied to the narrowband speech signal yd[n], which produces the estimated wideband signal

ŷ[n′]. The synthesis filter K is designed in such a way that it minimizes the reconstruction

error. We use system norm to measure the reconstruction error [59].

Now, we consider the signal modeling. The signal model represents the known characteristics

of the signals. In this work, we assumed them linear discrete time-invariant (LDTI) systems.

There are many ways to represent the LDTI system (see, e.g. [40]). In our work, pole-zero

information about the original (to be processed) wideband signal y[n′] is extracted in form of

a signal model F driven by external signal wd. Then, a modified error system of Figure 2.2

is represented in Figure 2.3. In Figure 2.3, the signal y[n′] is an output of system F driven

F

↓ 2 ↑ 2 K

+

−
e[n′]wd[n

′] y[n′]

yd[n] ŷ[n′]

Figure 2.3: Proposed architecture of error system with considering signal modeling for reconstructing
a stationary speech signal.

by an input signal wd[n
′] with known features (with finite energy, specifically wd ∈ `2(Z,Rn)).

y[n′] can be voiced signal, unvoiced signal, or a combination of them. Note that, due to

non-stationary nature of speech signal, there will be always modeling error in F (in the ABE

process, we have adopted). To circumvent that problem, we use H∞ norm and machine learning
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modeling techniques, which will be explained later. F (z), which is the rational transfer function

of F , is assumed to be a stable and causal transfer function. In Figure 2.3, F denotes both the

signal models G1 and G2 defined in (1.3). Both the signal models G1 and G2 have the spectral

envelope information of the wideband signal (16 kHz). When compared to Figure 1.2, we can

easily see that H1 = 1, H0 = 1, and A = 1 in Figure 2.3. The signal of interest is the wideband

signal y[n′] in the error system. Therefore, wideband modeling is used.

Performance index

The H∞ system norm is used to minimize the reconstruction error. This is because this

norm handles small modeling errors [52]. The H∞-norm of a system G with input X ∈ l2(Z,Rn)

and output Y ∈ l2(Z,Rm) is defined as (see, e.g., [1, 47,52])

‖G‖∞ := sup
X 6=0

‖Y‖2
‖X‖2

, (2.1)

where ‖.‖2 represents the l2-norm, and ‖.‖∞ represents the H∞-norm.

Problem formulation

To design optimal K(z), the following optimization problem is solved.

Problem 1. Given a stable and causal F (z), design a stable and causal interpolation filter Kopt

defined as

Kopt := arg min
K

(‖T‖∞), (2.2)

where T := F −K(↑ 2)(↓ 2)F . T maps wd to e (see Figure 2.3).

As mentioned earlier, the non-stationary behavior of speech signal introduces some uncer-

tainty in estimation of the signal model F (z) (in ABE process, we have adopted). In such a case,

H∞-norm optimization provides a robust solution against small modeling error in F (z) [52].

Solution of Problem 1

This solution is essentially from [47,48,57,60,61]. Problem 1 is solved to design an optimal

filter Kopt.
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2.1 A Proposed set-up based on wideband modeling for artificial bandwidth extension
of speech signals

The error system T is converted into the generalized error system (see Figure B.1) as follows

G1(z) = F (z),

G2(z) = F (z),

G3(z) = 1,

Kd(z) = K(z). (2.3)

Further, the solution of Problem 1 is obtained using the solution given for generalized error

system in Appendix B.

Remark 1. For downsampling by a factor N, see [47, 48].

Filter K has an infinite impulse response (IIR). Practically, the IIR filter K can not be

directly stored in a statistical model. Therefore, this filter is converted into an approximate

finite impulse response (FIR) interpolation filter by truncating its Taylor series at the origin.

The number of terms in the FIR interpolation filter is chosen 21 empirically, which is explained

in Section 2.2.2. This FIR filter response is taken as the wideband feature vector YK in this

work.

2.1.1.3 Computation of F (z)

The signal model F (z) for a given stationary wideband signal is computed by the standard

Prony’s method based function available in MATLAB [62, 63]. The obtained model is causal

and but may be unstable. To make it stable, those poles of the model, lying outside of the unit

circle, are emulated inside by reciprocating their magnitudes without altering the phase [40].

Note that, the magnitude spectrum of F (z) remains the same, however, the phase spectrum

changes. This stabilizing process does not affect the perception of speech signals because the

human auditory system is less sensitive to phase information [40]. Here, a question remains on

choosing the number of poles and zeros in the signal model F (z). Because poles and zeros in

the signal model are not ideally the same for each speech frame [40]. Therefore, the number of

poles and zeros is empirically calculated for each frame. In this context, we compute different

H∞ optimal synthesis filters K(z) corresponding to different signal models F (z) obtained by
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2. A new paradigm in artificial bandwidth extension

varying the number of poles and zeros (in the range of 11 to 81) in the MATLAB function.

The number of poles is taken one more than the number of zeros. Further, each K(z) is used

in the estimation of the wideband signal. To this end, we calculate `2-norm of the error e[n′]

for the given wideband signal y[n′] in Figure 2.3. Then, we choose the number of poles and

zeros, which produces the minimum `2-norm of the error.

Remark 2. For example, a speech signal of 100 ms duration is divided into frames of 25 ms
duration with 50 % overlapping (see Section 2.1.1.1 windowing and framing). We obtain 7
frames. For each frame, we find an F (z) by following procedure explained in section 2.1.1.3.
Further, we get 7 K(z) corresponding to 7 F (z).

2.1.1.4 Narrowband feature vector extraction

The narrowband information (narrowband features) is taken in four different ways, i.e.,

linear prediction coefficients (LPC) [64], line spectral frequencies (LSF) [65], linear frequency

cepstral coefficients (Cepstrum) [13], and Mel frequency cepstral coefficients (MFCC) [55, 66].

These parameters are computed from the narrowband speech signal. The dimension of the

narrowband feature vector is fixed to 10.

2.1.1.5 Modeling

This section has a description of statistical models. A statistical model is used to estimate

the wideband feature vector YK using the narrowband feature vector X. For this purpose, a

pre-trained model is trained using the narrowband and wideband features. In our work, two

types of statistical models are used, which are explained next.

Gaussian mixture model

A feature vector Z ∈ R31 is formed by concatenating the narrowband feature vector X of

dimension R10 and wideband feature vector YK of dimension R21. The feature vector Z is

modeled by the Gaussian mixture model (GMM) to obtain the joint probability distribution

function (pdf) of the narrowband feature vector X and wideband feature vector YK [67]. The
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of speech signals

pdf of Z is modeled by summing the weighted multivariate Gaussian distributions as follows

p(Z|λ) =
M∑

i=1

wip(Z|µzi ,Σzzi), (2.4)

with wi being the contribution of the ith Gaussian distribution out of M clusters, and p(Z|µzi ,Σzzi)

denotes the corresponding Gaussian pdf. It is written as

p(Z|µzi ,Σzzi) =
1

(2π)d/2|Σzzi|1/2
e−

(Z−µzi )
TΣ−1

zzi
(Z−µzi )

2 , (2.5)

with d dimension of feature vector Z, and µzi and Σzzi being the mean vector and covariance

matrix of Gaussian pdf, respectively, and they are defined as

µzi =



µxi

µyki


 , (2.6)

Σzzi =




Σxxi Σxyki

Σykxi Σykyki


 , (2.7)

where µxi and µyki
are mean vectors of X and YK, respectively. Σxxi and Σykyki

are covariance

matrices of X and YK, respectively. Σxyki
and Σykxi are cross-covariance matrices of X and YK,

respectively. For estimating the parameters of GMM model, Expectation-Maximization [67]

algorithm is used, which gives the maximum likelihood solutions, i.e., maximize the probability

of generating the feature vectors from the model. This leads to a joint pdf of X and YK.

Further, the wideband feature vector is estimated using the joint pdf for the given narrow-

band feature vector X. For this, a mapping function f(X) is found by considering the minimum

mean squared error (MMSE) criteria [68]. Mean squared error

εmse = E[‖YK − f(X)‖2], (2.8)

is computed, where YK and f(X) represent the original wideband feature vector and corre-

sponding estimated wideband feature vector for the given narrowband feature vector X, re-

spectively. To solve (2.8), Bayesian estimation theory is used that gives a mapping function.
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This mapping function is a conditional mean of ỸK given X and defined as [69]

f(X) =E(ỸK|X), (2.9)

=
M∑

i=1

αi(X)[µyki
+ ΣykxiΣ

−1
xxi

(X− µxi)], (2.10)

αi(X) =
wip(X|µxi,Σxxi)∑M
l=1wlp(X|µxl ,Σxxl)

. (2.11)

The weighting function αi(X) is a posterior probability of ith component in the Gaussian

mixture distribution from which feature vector X is generated. ỸK denotes the estimated

wideband feature vector, which is used in the artificial bandwidth extension of speech signal.

Deep neural network

A deep neural network (DNN) is used to estimate the wideband feature vector ỸK for a

given narrowband feature vector X [70]. DNN model has several parameters, such as activation

function, number of hidden layers, number of units in each hidden layer, learning rate, regu-

larization, optimizer, loss function, and mini-batch size, which need to be objectively checked

empirically to design an optimal DNN model. A DNN feed-forward topology architecture is

made up of N number of layers, consisting of N − 1 hidden layers and one output layer. The

output of the ith layer for sample index n is defined as

hi
n = fi(W

ihi−1
n + bi), 1 ≤ i ≤ N, (2.12)

where Wi and bi signify the weight and bias parameters, respectively. fi(.) is a non-linear

activation function, and hi
n is the output of ith layer. The output (hN

n ) of the N th layer yields

the estimated wideband feature vector, and the input (h0
n) to the first layer is the narrowband

feature vector. In (2.12), Wi and bi are unknown parameters, which are initialized with some

random value. Further, the mean squared error is considered as a loss function (α), which is
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minimized to obtain the optimal weight Wi
opt and bias bi

opt values of each layer as described

α =
1

T

T∑

n=1

‖hN
n −Yn

K‖22, (2.13)

(Wi
opt,b

i
opt) = arg min

Wi,bi

(α), (2.14)

with T being the mini-batch size and Yn
K denotes the original wideband feature vector.

2.1.2 Extension block

In the extension block, the pre-trained models designed in Section 2.1.1.5 are used for the

artificial bandwidth extension of the narrowband signal. The wideband signal is reconstructed

using the three processes: windowing and framing, the same as done in Section 2.1.1.1, mapping

process for estimating the wideband feature vector explained in Section 2.1.2.1, and estimation

of wideband signal explained in Section 2.1.2.2.

2.1.2.1 Wideband feature vector estimation

The only narrowband signal is available at the receiver side. Therefore, the narrowband

feature vector X is computed using the narrowband signal, as done in Section 2.1.1.4. Then, X

is fed to the pre-trained model, which maps the feature vector X into the estimated wideband

feature vector ỸK. Mapping process uses (2.11) and (2.12) in the cases of the GMM model

and DNN model, respectively.

2.1.2.2 Wideband signal estimation

The estimated wideband feature vector ỸK has the filter K information used in the band-

width extension process. The narrowband signal is upsampled by a factor of 2 and then passed

through the interpolation filter K(z). Subsequently, the resulting signal is multiplied by the

reciprocal of the Hamming window to estimate the wideband speech signal. Further, the

overlapped portion of two adjacent frames is estimated by averaging the overlapped parts of

the estimated wideband stationary signals. In other words, the weighted overlap-add method

(WOLA) is applied to reconstruct full speech signal [71,72].
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2.2 Experimental analysis and results

In this section, experiments are conducted to establish the correctness and effectiveness of

the proposed approach. Section 2.2.1 has a description of speech datasets used for evaluating

the proposed approach. Section 2.2.2 has an objective analysis, which is done for evaluating the

proposed approach. In objective analysis, we analyze the performance of the proposed approach

to know the effectiveness of the proposed filter K. Besides, experiments are performed to

decide the dimension of the wideband feature vector, show the proposed approach performance

using two types of pre-trained models, and compare the proposed approach with two baselines.

Section 2.2.3 consists of the subjective evaluation of extended speech files.

2.2.1 Databases

The proposed approach is evaluated on the TIMIT [73] and RSR15 [74] datasets. Both the

datasets contain the recorded speech files at a sampling rate of 16 kHz. The TIMIT dataset is

already segmented into train and test sets. The train set is used to train the model, while the

test set is considered as a validation set. A new test set is made by taking speech files from the

RSR15 dataset. This new test set has the speech files uttered by 4 female and 3 male speakers.

The consideration of test set from a different database leads to more generalized results.

2.2.2 Objective analysis

In this work, several standard objective speech quality measures such as mean square error

(MSE) [75], signal to distortion ratio (SDR) [76], log likelihood ratio (LLR) [3, 77], upper-

band (4-8 kHz) logarithmic spectral distance (LSDUB), full-band (0-8 kHz) logarithmic spec-

tral distance (LSDFB) [39, 78], narrowband MOS-LQO (mean opinion score listening quality

objective) [79, 80], and wideband MOS-LQO [81, 82] are chosen for examining the quality of

artificially extended speech signals. The mathematical formulations of these measures are given

in Appendix C.

Further, we analyze the objective measures of extended speech signals obtained using the

output signals at various parts of the bandwidth extension approach. Outputs of the upsampler
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and IIR interpolation filter are separately used to estimate wideband signals. This process is

conducted by using the oracle filter K directly in the extension block of Figure 2.1. It means the

narrowband speech signal is enhanced by applying the oracle IIR interpolation filter K on the

upsampled narrowband signal. For this analysis, we take some speech files from the validation

set. The objective measures are listed in Table 2.1 for extended speech signals estimated using

the upsampler and oracle IIR interpolation filter K. Here, the interpolation filter K improves

Table 2.1: Performance comparison of extended speech signals enhanced by applying the upsampler
(without applying filter K) and the oracle IIR interpolation filter K in Figure 2.1 on the speech files
taken from the validation set.

Output subblock
MSE

(×10−5)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

Upsampler 81.1673 3.01 1.4254 3.5044 11.3135 14.0124 1.0666
Interpolation filter K 4.8634 15.81 0.6547 3.8047 7.6220 9.1764 2.0155

all the objective measures significantly.

Moreover, filter K has an infinite impulse response. It is transformed into an approximate

FIR filter by truncating the Taylor series. For deciding the length of the FIR filter, objective

measures are computed for enhanced speech files, which are enhanced by using the FIR filters

of different lengths. In Table 2.2, the objective measures improve with increasing the number

Table 2.2: Performance evaluation for some speech files taken from the validation set in condition of
direct implanting FIR filter K (oracle K) in Figure 2.1 for ABE.

Number of terms
MSE

(×10−5)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

11 8.9405 13.18 0.7925 3.7450 8.2260 10.0941 1.6435

15 7.4762 13.74 0.7851 3.7521 8.1389 9.9537 1.7042

21 6.0912 14.79 0.7233 3.7782 7.9339 9.6452 1.8480

25 5.8136 15.06 0.7065 3.7810 7.8678 9.5378 1.8870

31 5.6043 15.25 0.6937 3.7854 7.8078 9.4545 1.9155

of terms present in the FIR filter, but slowly after the length 21. Hence, the filter length is set

to 21.

Further, we analyze the performances using the GMM model and DNN model in the pro-

posed artificial bandwidth extension approach.
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2.2.2.1 Performance evaluation using Gaussian mixture model

The GMM based regression technique is used to estimate an interpolation filter (wideband

feature vector) for a given narrowband feature vector in the proposed approach. The GMM

model with 128 mixtures is trained using the narrowband feature vectors and proposed wide-

band feature vectors. This experiment is performed for four types of narrowband attributes:

LSF, LPC, Cepstrum, and MFCC. The proposed approach using the GMM model is tested on

the test set. For this, objective measures for artificially extended speech files belonging to the

test set are computed for the narrowband attributes, as listed in Table 2.3.

Table 2.3: Performance evaluation by using 128 GMMs on the test set.

Features
MSE

(×10−4)
SDR LLR Narrowband MOS-LQO LSDFB LSDUB Wideband MOS-LQO

LSF+ỸK 3.4667 11.17 0.6063 3.5653 7.9945 9.9930 2.1970

LPC+ỸK 3.6206 10.73 0.6722 3.5629 8.4141 10.5752 2.0598

Cepstrum+ỸK 3.4719 10.86 0.7192 3.5524 8.7476 10.9760 2.0211

MFCC+ỸK 3.6033 10.90 0.6385 3.5642 8.2438 10.3218 2.1362

The objective measures are analyzed for all the narrowband features. LSF narrowband

features produce the best performance in comparison to the other narrowband features.

2.2.2.2 Performance evaluation using deep neural network

DNN topology is used to estimate interpolation filter coefficients. Some preliminary exper-

iments are done to decide the parameter values for DNN topology with fixing the narrowband

features. An optimal DNN architecture is designed by optimizing its parameters over the

fixed LSF narrowband features. AdaMax (adaptive moment estimation based on the infinity

norm) [83] optimizer is used to update the weights of network by applying L2 regularization

empirically [70]. Experimentally hyper-parameters such as mini-batch size, epochs, learning

rate α, decay rates β1 for the first-moment estimate, and β2 for the second-moment estimate

over a broad range are set to 200, 50, 0.01, 0.9, and 0.999, respectively. Mean and variance

normalization (MVN) is applied to the features by using the statistics obtained for the training

set. Also, batch normalization before activation function is applied to each hidden layer. The
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2.2 Experimental analysis and results

Table 2.4: Performance evaluation on the validation set for different DNN topologies by varying
the number of hidden layers (NHL) and the number of units (NU ), and ReLU activation function in
hidden layers, linear activation function in the output layers, LSF narrowband features and AdaMax
optimizer.

Topology with ReLU

activation functions
Performance on validation set

NHL NU

MSE

(×10−5)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

2 512 3.3349 15.19 0.7082 3.6948 7.7229 9.3855 1.8985

2 1024 3.3347 15.20 0.7074 3.6964 7.7202 9.3838 1.8998

3 128 3.3376 15.19 0.7053 3.6935 7.7166 9.3749 1.9007

3 256 3.3386 15.20 0.7046 3.6966 7.7131 9.3714 1.9024

3 512 3.3453 15.19 0.7055 3.6963 7.7162 9.3761 1.9012

3 1024 3.3521 15.19 0.7064 3.6981 7.7207 9.3814 1.8996

4 128 3.3292 15.21 0.7033 3.6908 7.7113 9.3678 1.9043

4 256 3.3174 15.23 0.7023 3.6916 7.7084 9.3633 1.9081

4 512 3.3247 15.22 0.7025 3.6928 7.7097 9.3653 1.9073

4 1024 3.3411 15.20 0.7042 3.6924 7.7175 9.3768 1.9038

ReLU activation function is used in hidden layers, and the linear activation function is used in

the output layer. Performances of different DNN topologies on the validation set are tabulated

in Table 2.4. Overall good performance on the validation set is acquired by four hidden layers

and 256 hidden units. Next, this architecture is trained by changing mini-batch sizes, and

performance on the validation set is tabulated in Table 2.5. It is observed that performance

Table 2.5: Performance evaluation on the validation set for the DNN model designed using 4 hidden
layers and 256 units in each hidden layer for different batch sizes.

Mini-batch Size
MSE

(×10−5)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

200 3.3174 15.2280 0.7023 3.6916 7.7084 9.3633 1.9081

150 3.3244 15.2186 0.7022 3.6906 7.7076 9.3628 1.9070

100 3.3197 15.2241 0.7023 3.6909 7.7064 9.3639 1.9054

50 3.3170 15.2285 0.7020 3.6901 7.7048 9.3630 1.9048

40 3.3304 15.2067 0.7033 3.6908 7.7061 9.3720 1.9035

using the mini-batch size 50 is obtained better than other mini-batch sizes. We use mini-batch

size 50 in further experiments. The optimal DNN architecture of 4 NHL and 256 NU is fixed
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2. A new paradigm in artificial bandwidth extension

Table 2.6: Performance evaluation on the test set by the proposed approach using the DNN model
designed using 4 hidden layers and 256 units in each hidden layer for different narrowband features.

Features
MSE

(×10−4)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

LSF+ỸK 3.2783 11.61 0.6350 3.5643 8.1894 10.2186 2.2048

LPC+ỸK 3.2677 11.62 0.6487 3.5660 8.2687 10.3268 2.1837

Cepstrum+ỸK 4.2454 9.75 0.9356 3.4481 9.6169 11.8401 1.7943

MFCC+ỸK 3.5402 11.20 0.6525 3.5579 8.2966 10.3693 2.1337

for all further experiments.

Moreover, the optimal DNN architecture is trained for the other narrowband features. The

proposed approach using the DNN model is tested on the test set. It is done by computing

the objective measures for the artificially extended speech files belonging to the test set. The

objective measures are listed in Table 2.6 for the narrowband features. It is observed that

LPC narrowband features yield better MSE, SDR, and narrowband MOS-LQO than the other

narrowband features. The rest of the objective measures in the majority of the cases are

obtained better for LSF narrowband features.

Furthermore, the objective measures are analyzed for the voiced speech and unvoiced speech

of the test set separately. For this, speech signals are segregated into two fundamental parts:

voiced speech and unvoiced speech by a glottal activity detection (GAD) method [84,85]. The

performance is analyzed for the voiced speech and unvoiced speech separately. Table 2.7 and

Table 2.8 have the objective measures computed for the voiced speech and unvoiced speech

taken from the test set, respectively, with varying narrowband feature definitions.

Table 2.7: Performance evaluation for the voiced speech extracted from speech files belonging to the
test set using the DNN model designed using 4 hidden layers and 256 units in each hidden layer for
different narrowband features.

Features
MSE

(×10−4)
SDR LLR NB MOS-LQO LSDFB LSDUB

LSF+ỸK 4.0418 13.63 0.8924 4.1548 7.6249 9.7540

LPC+ỸK 4.0240 13.53 0.8988 4.1556 7.6530 9.8017

Cepstrum+ỸK 7.4300 10.03 1.1916 4.0265 8.9441 11.3735

MFCC+ỸK 4.4334 12.98 0.9238 4.1508 7.7619 9.9562
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Table 2.8: Performance evaluation for the unvoiced speech extracted from speech files belonging to
the test set using the DNN model designed using 4 hidden layers and 256 units in each hidden layer
for different narrowband features

Features
MSE

(×10−4)
SDR LLR NB MOS-LQO LSDFB LSDUB

LSF+ỸK 5.0273 9.42 0.6365 3.8445 8.0101 9.6812

LPC+ỸK 5.0134 9.23 0.6473 3.8451 8.0846 9.7820

Cepstrum+ỸK 4.4418 6.02 0.9379 3.7447 9.3435 11.1161

MFCC+ỸK 5.3710 8.80 0.6604 3.8406 8.1386 9.8574

The LSF narrowband feature yields the best SDR, LLR, LSDUB and LSDFB for the voiced

speech and unvoiced speech. The LPC narrowband feature yields the best MOS-LQO for

both the speeches. The MSE is obtained the better using the LPC narrowband feature for

voiced speech and Cepstrum narrowband feature for the unvoiced speech. The LSF narrowband

feature, among all the narrowband features, yields the best performance in the majority of the

cases for voiced speech and unvoiced speech.

2.2.2.3 Performance comparison

The proposed method is compared with the two baselines: spectral translation [7,13,55] and

cepstral domain approach [39]. Experimental conditions are kept the same as datasets, dimen-

sions of wideband features, windowing, and DNN model. LSF features are used to represent

the narrowband features and wideband features in the spectral translation technique. Also,

this technique uses a gain factor calculated by following [55]. The cepstral domain approach

uses the narrowband magnitude spectrum as the narrowband feature and cepstral coefficients

as the wideband feature [39].

Moreover, these techniques are implemented by using the low pass filter for generating the

narrowband signal, i.e., H0 6= 1. Here, the low pass filter is a non-causal FIR filter defined

in [2]. Cut off frequency of the LPF filter is 3660 Hz. The length of this filter is 118. The

non-causality of this filter introduces a delay in transmission. Objective measures are listed in

Table 2.9 for the proposed approach and baselines implemented using the same DNN model.

As seen in Table 2.9, the baselines improve LLR, NB MOS-LQO, LSDFB, LSDUB, and the
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Table 2.9: A comparison of the objective measures computed on the test set speech files for the
proposed approach and the baselines

Methods
MSE

(×10−4)
SDR LLR NB MOS-LQO LSDFB LSDUB WB MOS-LQO

Pure narrowband signal 9.6999 5.1491 1.2166 4.1786 12.6584 16.1126 2.5179

Spectral translation 9.9900 4.99 0.7945 4.3457 9.4882 10.9215 2.3762

Cepstral domain 9.7986 5.09 0.7336 4.4058 9.4486 11.1373 2.4446

Aliased narrowband signal 10.1760 4.9720 1.3540 3.4529 12.7022 16.0640 2.1011

Proposed method 3.2783 11.61 0.6350 3.5643 8.1894 10.2186 2.2048

proposed approach improves MSE, SDR, LLR, NB MOS-LQO, LSDFB, LSDUB, and WB MOS-

LQO when compared with their respective narrowband signals. Also, the proposed method

improves all the objective measures except the narrowband and wideband MOS-LQO values

when compared to the baselines. The NB and WB MOS-LQO values are obtained better by

the existing methods. It may be due to the available original narrowband information. In

the baselines, the narrowband signal is generated by using the low pass filter. Therefore, the

narrowband information does not alter. As a result, NB and WB MOS-LQO values are obtained

better by the baselines than the proposed method.

Moreover, spectrogram of a speech file taken from the test set is analyzed. Figure 2.4

(a), (b), (c), and (d) illustrate spectrogram of the reference speech signal, extended speech

signals by the proposed approach, spectral translation technique, and cepstral domain approach,

respectively. As observed in Figure 2.4, the spectrogram of the extended speech signal has more

difference around 4 kHz from the original spectrogram for the baselines than the proposed

method. It has happened because of the energy levels adjustment issue around 4 kHz in the

existing methods. It is observed around 0.9 secs and 0.77 secs in Figure 2.4 that the estimated

high-band information is more close to the original high-band information by the proposed

method than the baselines. However, the estimated high-band information around 7-8 kHz

and during 0.40-0.55 secs in Figure 2.4 is observed more than the original information by the

proposed method when compared with the baselines.

34

TH-2564_156102023



2.2 Experimental analysis and results

Figure 2.4: Spectrogram of (a) Original wideband signal, (b), (c), and (d) reconstructed wideband
signal by the proposed method, spectral translation, cepstral domain, respectively.

2.2.3 Subjective listening test

Subjective assessment is done according to the ITU-T P.800 [86, Annex E] for examining

the speech quality. This task is conducted for the extended speech signals obtained by the

proposed method, spectrum translation technique, and cepstral domain approach using the

same DNN architecture. Extended speech files by the proposed method are rated with respect

to extended speech files by the existing methods. Ten pairs of extended speech signals belonging

to the test set are randomly chosen for these methods, i.e., 60 files total. Then, twelve listeners

were asked to give a mean opinion score (MOS) value between -3 (much worse) to 3 (much

better). The ages of these listeners are between 23 to 32 years. These listeners do not have any

hearing impairment and understand well English language. They were permitted to listen the

speech files more than once. Further, 95% confidence interval (CI) is computed for measuring

statistical significance. Then, the comparison mean opinion score (CMOS) and 95% confidence

interval (CI) are listed in Table 2.10. Our proposed method improves CMOS significantly

by 0.9375 and 1.5875 points in comparison to the spectral translation technique and cepstral
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Table 2.10: Subjective assessment on artificially extended speech files belonging to the test set by
the proposed method with respect to the baselines

Conditions CMOS CI

Spectral translation vs. Proposed method 0.9375 [0.7569 1.1181]

Cepstral domain vs. Proposed method 1.5875 [1.3630 1.8120 ]

domain approach, respectively. Unvoiced phonemes are perceived better in the extended speech

files using the proposed method than the baselines.

2.3 Conclusion

A new framework (which capitalizes on artificially introduced non-ideality in the narrowband

signal) is proposed for the artificial bandwidth extension of speech signals. In our proposed

framework, the transmitter set-up is different from the existing transmitter set-up, which helps

mainly in identifying the high-frequency components for the unvoiced speech. The discrete

interpolation filter is obtained by using a signal model with the help of H∞ optimization. The

obtained rational stable and causal interpolation filter is converted into an FIR filter empirically.

This FIR filter is taken as the wideband feature. Experiments are performed by considering

four types of narrowband features: LSF, LPC, MFCC, and Cepstrum. Estimation of wideband

feature for a given narrowband feature is conducted by two different machine learning modeling

techniques: GMM and DNN. Performance is analyzed on the test set speech files taken from

the RSR15 database by computing the standard objective measures: SDR, MSE, narrowband

MOS-LQO, LLR, LSDFB, LSDUB, wideband MOS-LQO, and subjective listening test. Also,

the objective measures are analyzed for the voiced speech and unvoiced speech separately.

The proposed approach obtains the better LSDUB and LLR for the unvoiced speech than the

voiced speech. The proposed approach improves the objective measures except narrowband

and wideband MOS-LQO values in comparison to the baselines using the DNN model. In the

listening test, CMOS is achieved higher by the proposed method than the baselines.
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3. Artificial bandwidth extension technique based on the wideband modeling

In the previous chapter, the ABE framework was not suitable for the existing technologies.

Hence, this chapter proposes a new ABE approach using H∞ sampled-data system theory

that works with the current technologies. We have followed the ITU-T standards commonly

used by the literature for better comparison [39, 53, 54]. Specifically, we have worked with

the band-limited narrowband (approximately 300-3400 Hz) signal encoded at 12.2 kbps (see

complimentary paper [87] without encoding) [54]. The proposed ABE approach considers wide-

band signal modeling. In this context, a signal model (pole-zero model) is used to capture the

spectral envelope information of the wideband (50-7000 Hz) signal. A novel error system is

proposed and built up by considering the narrowband signal generation process, bandwidth

extension process, and reference wideband signal generation process. This error system is de-

signed for taking the pole-zero information of a signal into account. Solution of the error system

can be obtained using the methods explained in the H∞ sampled-data system theory [41–45].

The solution of the error system is a synthesis filter, which is used in the bandwidth extension

process. The synthesis filter has the narrowband envelope information as well as the high-band

envelope information, but the narrowband envelope information is not needed. Therefore, the

narrowband information is suppressed in the synthesis filter. The energy of the estimated high-

band signal is controlled by using a gain adjustment technique and a spectral floor suppression

technique [13, 31, 55]. A large number of synthesis filters and corresponding gains are required

to reconstruct the whole speech signal in a practical scenario due to the fact that the speech

signal is non-stationary. This problem is solved by using a DNN model, which provides a kind

of compact form representing the information of synthesis filters and gains. The proposed ABE

approach extends the encoded narrowband signal for a realistic scenario [2, 56]. The standard

transmitter (as described in [39, 53, 54]) set-up is followed in this work. The error system is

also adapted according to the standards. Subjective and objective analyses are performed by

considering the two datasets using the DNN model. This chapter is based upon the paper [88],

which is a modified version of results without encoding [87].

The rest of the chapter is organized as follows: Section 3.1 has the proposed approach used
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3.1 A proposed set-up based on wideband modeling for artificial bandwidth extension
of speech signals

to enhance the narrowband signal. The proposed approach for ABE includes the designing

of the pre-trained model and then the wideband signal estimation. Designing the pre-trained

model involves the pre-processing of speech signals, features extraction, and training of the DNN

model. The wideband signal estimation process consists of narrowband signal reconstruction,

high-band feature vector and gain factor estimation, and high-band signal estimation. Sec-

tion 3.2 has the experimental results and analysis using the proposed bandwidth extension

approach. Also, the proposed approach is compared with the two baselines. Section 3.3 con-

cludes the proposed method.

3.1 A proposed set-up based on wideband modeling for

artificial bandwidth extension of speech signals

A basic block diagram for ABE is shown in Figure 1.1. It can be observed in Figure 1.1,

a pre-trained model is needed in advance. Its designing process is explained in Section 3.1.1

for the proposed ABE approach. The ABE process uses the pre-trained model at the receiver

side, as shown in Figure 1.1. As evident from Figure 1.1, the ABE process consists of four main

processes: estimation of the high-band features, NB features extraction, bandwidth extension

process, and narrowband signal reconstruction process. These processes play an important role

in the estimation of the wideband signal. Furthermore, the proposed ABE approach uses an

additional process to adjust the energy level of the estimated high-band signal. In this chapter,

the (encoded) narrowband signal is enhanced by the proposed bandwidth extension approach.

Section 3.1.2 has a description of the proposed ABE approach for estimating the wideband

signal corresponding to the encoded narrowband signal.

3.1.1 Designing of the pre-trained model

Here, a DNN model is trained to design the pre-trained model, as depicted in Figure 3.1.

The training process of the DNN model involves two main sequential processes, viz, features

extraction and DNN model training by using extracted features, as shown in Figure 3.1 [70].

The features extraction process derives three attributes viz. high-band feature vector YK,

39

TH-2564_156102023



3. Artificial bandwidth extension technique based on the wideband modeling

SWB[n
′]

SAMR−NB [n]

Synthesis filter designed using H∞ optimization

Band pass filter

Bandwidth extension technique S̃HB [n
′]

SBPF [n
′]

Band pass filter
S̃BPF [n

′]

Gain calculation

NB feature extraction

g
DNN model training

YK

X

YK

Figure 3.1: Block diagram Illustrating the training of the DNN model.

gain factor g, and narrowband feature vector X. For computing these features, two input

signals, wideband signal SWB[n′] and encoded narrowband signal SAMR−NB[n] are needed in

advance. Hence, these signals can be obtained using the processes described in Section 3.1.1.1.

A description for computing the features YK, g, X, and training the DNN model is given in

Section 3.1.1.2, Section 3.1.1.3, Section 3.1.1.4, and Section 3.1.1.5, respectively.

3.1.1.1 Pre-processing of speech signals

This section explains the process for producing the encoded narrowband signal SAMR−NB[n]

at the transmitter side for realistic mobile telephone speech [2, 56]. Speech files sampled at 16

kHz are processed to produce the narrowband speech encoded at 12.2 kbps in narrowband

telephonic communication [56,89]. A process is drawn in Figure 3.2 for obtaining the encoded

narrowband speech signal. In Figure 3.2, the original speech signal is filtered by the standard

Speech Signal MSIN HQ2P.56 level
adjustment Filterfilter

16 to 13 bit Encoding andDown-
sampler

SHQ2−MSIN [n′]

conversion Decoding
16 to 13 bit
conversion

SAMR−NB [n]

AMR

Figure 3.2: AMR coded narrowband signal generation process.

mobile station input (MSIN) high-pass filter [2] and subsequently scaled to an active speech

level of -26 dBov [90]. The resulting signal is passed through another standard high-quality low

pass filter (HQ2) [2] and then downsampled by a factor of 2. Thus, an obtained narrowband

signal (SNB[n]) is subjected to 16 to 13 bit conversion, encoding using the adaptive multi

rate (AMR) narrowband speech codec at 12.2 kbps and subsequently decoding [89], and again
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3.1 A proposed set-up based on wideband modeling for artificial bandwidth extension
of speech signals

16 to 13 bit conversion, which gives the AMR coded narrowband signal SAMR−NB[n]. This

narrowband signal (SAMR−NB[n]) is processed by the proposed ABE framework for synthesizing

the frequency components up to 7 kHz.

The wideband signal SWB[n′] is obtained by following Figure 3.3 wherein SWB[n′] is gen-

erated by the standard P.341 filtering [2] of the original speech file sampled at 16 kHz and

subsequently scaled to an active speech level of -26 dBov. The signal SWB[n′] is taken as a

reference signal for obtaining the synthesis filter and for performance evaluation. Here, n rep-

Speech Signal P.341 P.56 level
adjustmentfilter

SWB[n
′]

Figure 3.3: Wideband signal generation process.

resent the sample index for 8 kHz sampled signal. n′ represent the sample index for 16 kHz

sampled signal. All these operations are performed for each 20 ms frame duration.

Furthermore, each frame is multiplied by the Hanning window’s square root with 50%

overlap for adjacent frames for bandwidth extension. The whole speech signal is reconstructed

by multiplying each estimated wideband signal (wideband frame) with the square root of the

Hanning window and then combining resultant frames using the overlap-add method [71,72].

3.1.1.2 High-band feature extraction

The high-band feature vector YK contains information of the proposed synthesis filter used

in the proposed bandwidth extension process. The synthesis filter is designed by using the H∞

optimization. For this, an error system (Figure 3.4) is proposed by considering the narrowband

signal generation process, bandwidth extension process used at the receiver side, and reference

wideband signal SWB[n′] generation process.

Original Signal

P.341

MSIN

Level adjustment

Level adjustment HQ2 ↓ 2
SHQ2−MSIN [n′] SAMR−NB [n]

A ↑ 2 K

SWB[n
′]

ŜWB[n
′]

e[n′]

AMR

Figure 3.4: A proposed error system for wideband signal reconstruction.

In Figure 3.4, the signal SHQ2−MSIN [n′] is obtained by passing the original signal through the
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MSIN filter followed by -26 dBov level adjustment and the HQ2 low pass filter. ↓ 2 depicts

a downsampler with a downsampling factor of 2. Analysis filter A (Figure 3.4) is the recipro-

cal of an all-pole model (order 16) of signal SAMR−NB[n] obtained by linear prediction (LP)

analysis [5]. An output of filter A is the narrowband residual signal. AMR block (Figure 3.4)

performs 16 to 13 bit conversion, encoding and decoding, and again 16 to 13 bit conversion op-

erations. ŜWB[n′] represents the estimated wideband signal. The error between the estimated

and reference wideband signal is represented by e[n′]. A filter K is obtained in such a way that

it minimizes the reconstruction error.

Figure 3.4 is a basic error system. Further, Figure 3.4 is modified by including the pole-zero

model of a signal. The pole-zero model contains the spectral envelope information of a signal.

Therefore, signals SHQ2−MSIN [n′] and SWB[n′] are represented by their respective pole-zero

models, as shown in Figure 3.5 [40].

wd[n
′]

FHQ2−MSIN ↓ 2
SHQ2−MSIN [n′] SAMR−NB [n]

A ↑ 2 K

SWB[n
′]

ŜWB[n
′]

e[n′]

FWB

AMR

Figure 3.5: Proposed an error system with pole-zero modeling for wideband signal reconstruction.

In Figure 3.5, SHQ2−MSIN [n′] and SWB[n′] are the outputs of pole-zero models FHQ2−MSIN

and FWB, respectively, driven by an input signal wd[n
′] with known features (with finite energy,

specifically wd ∈ `2(Z,Rn)). In order to obtain a pole-zero model, the number of poles and zeros

are fixed as 10, 9 for FHQ2−MSIN and 20, 10 for FWB, respectively. These values are empirically

chosen. Signal models FHQ2−MSIN and FWB are then obtained by MATLAB function prony

based on Prony’s method [91]. This function takes the three inputs: signal considered as

an impulse response, number of poles, and zeros. The output of the prony function is the

numerator and denominator coefficients of the signal model. A few poles and zeros of these

signal models may lie outside the unit circle. In this case, a minimum phase system is used

in the H∞ optimization problem. This is based on the assumption that the human auditory

system is less sensitive to phase information [40]. The poles and zeros lying outside the unit

circle are reflected inside the unit circle by inverting their magnitudes without altering the
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phase for obtaining the minimum phase system [40]. The signal models FWB and FHQ2−MSIN

in Figure 3.5 denote the signal models G1 and G2 defined in (1.3), respectively. The signal

models G1 and G2 have the spectral envelope information of the wideband signal (16 kHz) and

the narrowband signal (16 kHz), respectively. H0 is the low pass filter as per the ITU standards,

passes the frequency components in the range of 300 Hz to 3400 Hz approximately. H1 is the

p.341 band pass filter, passes the frequency components in the range of 50 Hz to 7000 Hz. H0

is designed by cascading the MSIN high pass filter and the HQ2 low pass filter.

Problem formulation

The filter K is obtained by minimizing the reconstruction error by the following optimization

problem.

Problem 2. Given the signal models FHQ2−MSIN , FWB, and filter A, design a stable and causal
filter Kopt defined as

Kopt := arg min
K

(‖W‖∞), (3.1)

where W is the discrete error system defined as

W := FWB −K(↑ 2)A(AMR)(↓ 2)FHQ2−MSIN , (3.2)

with input wd[n
′] and output e[n′] (see Figure 3.5). Here, ‖W‖∞ denotes the H∞-norm of the

system W, which is defined in (2.1).

Further, a theoretical solution of Problem 2 is obtained using the methods explained in the

H∞ sampled-data control theory [41–45]. To make the problem mathematically tractable, an

ideal AMR block (i.e., AMR = 1) has been used only for solving Problem 2. This may result in

some modeling errors. However, it is generally advisable to use H∞-norm in case of modeling

errors [52].
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Solution of Problem 2

Problem 2 is solved to design an optimal filter Kopt. The error system W is converted into

the generalized error system (see Figure B.1) as follows

G1(z) =FWB(z),

G2(z) =FHQ2−MSIN(z),

G3(z) =A(z),

Kd(z) =K(z). (3.3)

Further, the solution of Problem 2 is obtained using the solution given in Appendix B. The

obtained infinite impulse response (IIR) filter K consists of the narrowband information and

high-band information as well. However, only high-band information is required for bandwidth

extension. Therefore, the undesired narrowband information present in filter K is suppressed

by cascading it with a linear phase FIR high pass filter, which is defined as

KHPF (z) = K(z)HHPF (z), (3.4)

where KHPF is the synthesis IIR filter used for bandwidth extension. HHPF (z) represents the

high pass filter with finite impulse response (FIR). The filter HHPF (z) has a length of 81, which

is designed using Matlab command firls with setting a cut-off frequency of 3675 Hz (0.45π rad)

and subsequently multiplied by the Kaiser window with a shape factor of 2. The filter KHPF is

an IIR filter and is represented as a rational transfer function. In order to store the synthesis

filter information, the filter KHPF is converted into an FIR filter by truncating higher-order

Taylor series coefficients of KHPF (z). The FIR filter length is selected empirically, which is

explained in Section 3.2.2. The number of coefficients in the FIR synthesis filter has been

fixed to 15, which gives better results overall. In essence, this FIR filter contains the high-

band spectral envelope information. This FIR approximation of IIR synthesis filter KHPF is

considered as the high-band feature vector YK.
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3.1.1.3 Gain calculation

The obtained high-band feature vector YK is used in the bandwidth extension technique for

estimating the high-band signal S̃HB[n′], as depicted in Figure 3.6. Further, the signal S̃HB[n′]

SAMR−NB [n]

YK

S̃HB [n
′]

A ↑ 2 KHPF

Figure 3.6: Bandwidth extension technique for the AMR coded narrowband signal.

is again passed through a linear phase band pass filter for extracting its desired frequency

components between 4 kHz to 7 kHz (approximately). The band pass filter is designed with

the specifications: filter order = 40, stopband frequency1 (lower stopband frequency) = 3660

Hz, passband frequency1 (lower passband frequency) = 4340 Hz, passband frequency2 (higher

passband frequency) = 7300 Hz, stopband frequency2 (higher stopband frequency) = 7800 Hz,

and design method as least square using the Matlab command designfilt.

For gain adjustment, the energy of the estimated band pass filtered signal is set equal to

the energy of the original band pass filtered signal. As such, the gain factor g is calculated as

g =

√∑N
n′=1 S

2
BPF [n′]∑N

n′=1 S̃
2
BPF [n′]

, (3.5)

where SBPF [n′] is the original band pass filtered signal obtained by band pass filtering of the

reference wideband signal SWB[n′], S̃BPF [n′] represents the estimated band pass filtered signal

derived by band pass filtering of the estimated high-band signal S̃HB[n′], and N is the signal

length.

3.1.1.4 Narrowband feature vector extraction

The narrowband envelope information is represented by 16 linear prediction coefficients

(LPC), which are calculated for the input signal (SAMR−NB[n]) by linear prediction analysis [64].

Additionally, five other features are considered for capturing the input signal characteristics.

These features are zero-crossing rate, gradient index, kurtosis, spectral centroid, and normalized

relative frame energy [13, 92, 93]. These features are concatenated along with LP coefficients,
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and the resulting feature vector is represented by xi. Further, temporal characteristics are taken

into account by considering adjacent frame’s information. The final narrowband feature vector

of 63 dimensions is constructed similar to [13]. The narrowband feature vector is composed as

X =

[
xi, xi+1 − xi−1, xi+1 − 2xi + xi−1

]
,

where i, i− 1, and i+ 1 denote present frame, previous frame, and next frame, respectively.

3.1.1.5 Training of the DNN model

The extracted features YK, g, and X are used to train the DNN model. The narrowband

feature vector X ∈ R63 is fed to the DNN model as the input. A concatenation of the high-band

feature vector YK ∈ R15 and log10 of squared gain factor g (i.e., [YK, 2 log10 g]) is taken as the

target output for training the DNN model. Here, 2 log10 g is represented by g1. Mean squared

error is chosen as a loss function for training the DNN model (see DNN-R in [13]). The mean

and variance normalization (MVN) has been applied to both the input and output vectors of

the DNN model using the statistics obtained for the training set [36].

3.1.2 Artificial bandwidth extension of AMR coded narrowband
speech signal

The trained DNN model in Section 3.1.1.5 is used in the artificial bandwidth extension pro-

cess of the encoded narrowband signal SAMR−NB[n] at the receiver side, as shown in Figure 3.7.

SAMR−NB [n]

NB feature extraction DNN

ỸK
S̃HB [n

′]
Band pass filter

X

g̃

S̃BPF [n
′]

A ↑ 2 KHPF

↑ 2 HQ2

SFS
SAMR−NB [n

′]
S̃WB[n

′]

ŜHB [n
′]

Bandwidth extension technique

Figure 3.7: Illustration of the artificial bandwidth extension of the AMR coded narrowband signal.

The wideband signal estimation has four main processes. These processes are the nar-

rowband signal reconstruction process, features estimation, high-band signal estimation, and
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wideband signal estimation, as explained in Sections 3.1.2.1, 3.1.2.2, 3.1.2.3, and 3.1.2.4, re-

spectively.

3.1.2.1 Narrowband signal reconstruction process

The narrowband signal reconstruction process is used to resample the narrowband signal.

The AMR coded narrowband signal SAMR−NB[n] sampled at 8 kHz is resampled at 16 kHz.

For this, the signal SAMR−NB[n] is upsampled by a factor of 2 and subsequently filtered by the

HQ2 low pass filter. This leads to an output signal SAMR−NB[n′] sampled at 16 kHz, as shown

in Figure 3.7.

3.1.2.2 High-band feature vector and gain factor Estimation

The high-band feature vector and gain factor are estimated using the trained DNN model.

For this, the NB feature vector is computed for a given narrowband signal SAMR−NB[n], the

same as done in Section 3.1.1.4. MVN is applied to the narrowband feature vector and then

fed to the DNN model. A reverse MVN procedure is applied to the DNN output [36]. The

output of the DNN model has [ỸK, g̃1], where ỸK is the estimated high-band feature vector

containing the synthesis filter (KHPF ) information and g̃1 contains the corresponding estimated

gain factor (g̃) information computed as g̃ = 10(g̃1/2).

3.1.2.3 High-band signal estimation

The high-band signal is estimated using the estimated high-band feature vector. The esti-

mated high-band feature vector is used to re-synthesize the high-band signal. For estimating the

high-band signal, the analysis filter A is calculated for a given narrowband signal SAMR−NB[n]

(see Section 3.1.1.2). The signal SAMR−NB[n] is passed through filter A and then upsampled by

a factor of 2. The resulting signal is passed again through the estimated synthesis filter KHPF ,

which generates a high-band signal S̃HB[n′] (see Figures 3.6, 3.7).

3.1.2.4 Wideband signal estimation

The wideband signal is estimated by adding the resampled narrowband signal and the mod-

ified estimated high-band signal obtained using the estimated gain factor and an attenuation
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factor. The estimated gain factor and attenuation factor are used to set the energy level of

the estimated high-band signal. For this, the signal S̃HB[n′] is fed into the band pass filter

for extracting the desired frequency components. The obtained signal S̃BPF [n′] is multiplied

with the estimated gain factor g̃. This leads to an output signal ŜHB[n′]. The spectral floor

suppression (SFS) technique [13] is used in the proposed approach. This technique controls

the synthesized energy in the high-band frequency range for sounds. For this, the ratio RSFS is

computed as

RSFS =

1
N/4

∑(N/2)+1
k=(N/4)+2 |φ̂HB[k]|2

1
(N/4)+1

∑(N/4)+1
k=1 |φ̂NB[k]|2

, (3.6)

where φ̂HB[k] and φ̂NB[k] are the power spectrum density of signals ŜHB[n′] and SAMR−NB[n′],

respectively. Then an attenuation factor is calculated as

d = min

{
dhigh − dlow

θSFS
RSFS + dlow, dhigh

}
dB, (3.7)

where dhigh = −3 dB, dlow = −18 dB, and θSFS = 5. These values have been chosen empirically

for the proposed approach.

Finally, the wideband signal S̃WB[n′] is estimated by adding the resampled narrowband

signal SAMR−NB[n′] and the estimated high-band signal obtained by applying the attenuation

factor d on ŜHB[n′] defined as

S̃WB[n′] = SAMR−NB[n′] + 10
d
20 ŜHB[n′]. (3.8)

3.2 Experimental set-up and results

Section 3.2.1 has a description of speech datasets used for evaluating the proposed approach.

In Section 3.2.2, experiments are conducted for deciding the number of coefficients in the FIR

synthesis filter and DNN topology. Also, spectrogram of a female speech file is analyzed.

Objective and subjective measures will be discussed for the proposed approach and compared

with two baselines in Sections 3.2.2.2 and 3.2.2.3.
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3.2.1 Databases

The proposed approach is evaluated on the TIMIT [73] and RSR15 [74] datasets. The

train set of TIMIT dataset is used to train the model, while the test set of TIMIT dataset is

considered as a validation set. A new test set is made by taking speech files from the RSR15

dataset. This new test set has the speech files uttered by 4 female and 3 male speakers. Speech

files are processed, as explained in Section 3.1.1.1.

3.2.2 Results

Objective and subjective assessments are carried out to analyze the quality of the artificially

extended speech signals. For this purpose, objective metrics are chosen the wideband PESQ

(perceptual evaluation of speech quality) in terms of the wideband MOS-LQO (mean opinion

score listening quality objective) [81, 82], upper-band (4-7 kHz) logarithmic spectral distance

(LSDUB), and full-band (0-7 kHz) logarithmic spectral distance (LSDFB) [78]. Artificially

extended speech signals are band pass filtered by the standard P.341 filter [2] in the objective

assessment. Subjective measure CMOS (comparison mean opinion score) [86] is chosen for

examining the speech perceptual quality. The wideband MOS-LQO is used for deciding the

high-band feature vector YK dimension. The wideband MOS-LQO is measured for the enhanced

speech signals belonging to the validation set, which are synthesized by using high-band feature

vectors YK of different dimensions. We also observe the wideband MOS-LQO by using the SFS

technique in the proposed bandwidth extension approach. These analyses are done using the

FIR approximation of synthesis filter KHPF directly (oracle filter KHPF ). Wideband MOS-LQO

values are listed in Table 3.1 without applying the SFS technique (d = 0) and in Table 3.2 with

applying the SFS technique (d 6= 0). It can be observed from Tables 3.1 and 3.2 that the

Table 3.1: Performance evaluation of enhanced speech files belonging to the validation set in the
condition of directly using the FIR synthesis filter obtained by truncating the impulse response of IIR
synthesis KHPF and without applying the SFS technique (d = 0) for ABE

Synthesis Filter Length 0 (KHPF = 0) 10 15 20 25 30

MOS-LQO 3.2097 3.3649 3.3996 3.4174 3.3937 3.3846
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Table 3.2: Performance evaluation of enhanced speech files belonging to the validation set in the
condition of directly using the FIR synthesis filter obtained by truncating the impulse response of IIR
synthesis KHPF and applying the SFS technique (d 6= 0) for ABE

Synthesis Filter Length 0 (KHPF = 0) 10 15 20 25 30

MOS-LQO 3.2097 3.5246 3.5326 3.5310 3.5239 3.5204

SFS technique improves the wideband MOS-LQO value significantly. Also, filter lengths 15 and

20 give almost the same wideband MOS-LQO values and are comparatively better than the

other filter lengths for both the cases with and without the SFS technique. Hence, we choose

the filter length either 15 or 20 in order to obtain a better wideband MOS-LQO value on the

validation set by the DNN model. First, the DNN model is designed for the filter length 15

and then compared with the filter length 20.

3.2.2.1 Architecture of the DNN model

DNN architecture for the proposed HB feature vector along with the gain factor and NB

feature vector has been decided experimentally. For this purpose, the batch size (128), the

number of maximum epochs (50), momentum (0.9), and the initial learning rate (0.1) have

been fixed. The weights and biases are initialized by random values taken from the normal

distribution. The normal distribution function is parameterized with zero mean and standard

deviation of u−1/2, with u being the number of incoming connections of the respective unit. The

activation function for the layers has been set to ReLU. For avoiding over-fitting problems, L2-

regularization for layer weights has also been employed [70]. In training of the DNN model, the

learning rate is fixed according to the validation error. If the validation error is not improved,

then the learning rate is changed to half of the previous epoch’s learning rate. The minimum

learning rate is set to 0.0005. If the learning rate reaches the minimum, then it is not altered.

Training of the DNN model is stopped if the validation error does not improve for 5 epochs.

Different DNN topologies, obtained by varying the number of hidden layers (NHL) and the

number of hidden layer neurons (NU), have been trained. The mean squared errors computed for

predicted outputs of the validation set, generated from different DNN topologies, are computed
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and compared in Table 3.3. It can be observed from Table 3.3, a topology of 5 NHL and 512 NU

Table 3.3: Computation of the mean squared error and standard deviation for the validation set
with varying the DNN architecture

Number of hidden-layers 3 3 3 3 4 4 4 4 5 5 5 5

Number of Neurons in each hidden-layer 128 256 512 1024 128 256 512 1024 128 256 512 1024

Average validation error 0.0508 0.0509 0.0599 0.0642 0.0511 0.0507 0.0506 0.0595 0.0508 0.0572 0.0504 0.0683

Standard deviation (10−4) 2.4819 1.3565 110.9090 114.4867 1.4697 1.9390 0.4899 114.4867 1.6000 90.3371 0.4000 91.2316

performs best overall. This architecture has been fixed for all the further experiments. Next,

this architecture is trained for the filter length of 20. For the validation set, the wideband

MOS-LQO value is improved by considering a filter length of 15 rather than 20. Therefore, the

number of coefficients in the FIR synthesis filter is taken 15.

Spectrogram of a female speech file taken from the validation set is illustrated in Figure 3.8.

We analyzed the spectrogram of different signals obtained at various parts in the proposed

ABE framework. Figure 3.8 (a), (b), (c), (d), and (e) illustrate spectrograms of the reference

wideband speech signal SWB[n′], encoded narrowband speech signal SAMR−NB[n′] sampled at

16 kHz, extended wideband speech signals using the signals S̃BPF [n′], ŜHB[n′], and 10
d
20 ŜHB[n′]

(see Figure 3.7) in the proposed framework using DNN model, respectively. Some fricative

sounds (phonemes) such as ‘s’, ‘f’, and ‘sh’ are marked in the spectrograms. In Figure 3.8

(c), enhancement is not seen because of not applying the gain factor on the signal S̃BPF [n′].

The gain factor is important for perceiving the enhancement. After using the gain factor,

enhancement is observed in the spectrogram of signal ŜHB[n′], as shown in Figure 3.8 (d).

Some sounds are overestimated in Figure 3.8 (d) when compared with Figure 3.8 (a). Hence,

the SFS technique is applied on the signal ŜHB[n′], which significantly reduces overestimation,

as seen in Figure 3.8 (e). But, energy of the fricatives phonemes is somewhat lessened than

energy of the original phonemes. It is happened because of applying the SFS technique, which

introduces attenuation in the estimated high-band signal. Further, it is observed that the ‘s’

and ‘f’ phonemes are reconstructed better than the ‘sh’ phonemes. A gap or discontinuity at

around 4 kHz is observed in Figure 3.8 (d) and (e) due to using the band-limited narrowband

signal. The narrowband signal has frequency contents approximately between 300 Hz to 3400
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Hz. This gap in spectral content may degrade perceptual speech quality [10].

3.2.2.2 Objective assessment

The proposed approach is compared with two baselines such as modulation technique [13]

and cepstral domain approach [39]. The modulation technique is based on the speech production

model. This technique needs the high-band envelope information and high-band residual signal.

Therefore, the high-band envelope information is estimated by the linear frequency cepstral

coefficients, while the high-band residual signal is obtained by the spectral translation method.

The cepstral domain approach estimates the high-band information by finding the high-band

magnitude spectrum and high-band phase spectrum. In the cepstral domain approach, the high-

band magnitude spectrum is estimated by the linear frequency cepstral coefficients, while the

high-band phase spectrum is directly obtained by shifting the phase spectrum of the narrowband

signal. The proposed approach is also evaluated using 128 GMMs. Experimental conditions

such as window duration, type of window, datasets, and narrowband processing have been fixed

in these tests. Wideband MOS-LQO, upper-band logarithmic spectral distance (LSDUB), and

full-band logarithmic spectral distance (LSDFB) are computed for the proposed framework and

the baselines on the test set, as arranged in Table 3.4. As it can be observed from Table 3.4,

Table 3.4: Performance evaluation on the test set for the proposed approach and the baselines.

Method Wideband MOS-LQO LSDUB LSDFB

Proposed approach using DNN model 3.3022 17.6657 13.2050

Proposed approach using 128 GMMs model 3.0947 17.9617 13.3834

Modulation technique 3.2263 19.8028 14.4981

Cepstral Domain 2.7540 11.4685 9.7369

the proposed approach using the DNN model improves all the measures compared to the GMM

model. The proposed approach using the DNN model improves by 0.0759 and 0.5482 MOS-

LQO values compared to the modulation technique and cepstral domain approach, respectively.

The proposed approach using the DNN model improves the LSDUB and LSDFB values when

compared to the modulation technique, which may result a better perception of speech sounds.

The cepstral domain approach produces the best LSDUB and LSDFB values, which may result
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a better perception. But, the worst MOS-LQO value is obtained for the cepstral domain

approach, which may result the worst speech quality. The proposed approach using the DNN

model provides the best MOS-LQO and moderate logarithmic spectral distances (LSDUB and

LSDFB).

Spectrogram of a female speech file taken from the test set is discussed. Figure 5.9 (a), (b),

(c), (d), and (e) illustrate spectrogram of the reference speech signal, AMR coded narrowband

speech signal sampled at 16 kHz, extended speech signals by the proposed approach, modulation

technique, and cepstral domain approach, respectively. It can be observed in Figure 5.9 (e), a

pattern like noise is seen in spectrogram of the extended speech signal by the cepstral domain

approach. As a result, energy in the estimated high-band region is high, however, this noise

affects the speech quality. While this noise is not seen in Figure 5.9 (c, d). Therefore, the

speech quality is obtained better for the proposed approach and modulation technique than the

cepstral domain approach. Energy in the high-band region of extended speech signal is higher

for the proposed approach than the modulation technique. As a result, sounds in extended

speech signal are perceived better for the proposed approach than the modulation technique.

Some noise may be present in the extended speech signal generated by the proposed approach,

however, it does not affect the perception of sounds.

3.2.2.3 Subjective assessment

In a typical telephonic conversation, perceptual quality of the receiving speech signal has

been given more priority. For this, subjective assessment is done by following ITU-T P.800 [86,

Annex E]. In the subjective assessment, two speech files are compared and scored on the CMOS

scale from -3 (much worse) to 3 (much better). Twelve listeners participated in this assessment.

They do not have any hearing impairment. Their ages are between 25 to 32. Twelve speech files

are taken from the test set for subjective evaluation. CMOS score is calculated for the three

conditions in which the artificially extended speech files (enhanced by the proposed approach

using the DNN model) are compared to the artificially extended speech files (enhanced by

the baselines) and the AMR coded narrowband signals. All these speech files are band pass
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filtered by the standard P.341 filter [2] and subsequently scaled to an active speech level of -26

dBov [90]. CMOS and 95% confidence interval are listed in Table 3.5 for each test condition. As

Table 3.5: Subjective assessment conducted on the artificially extended speech files belonging to the
test set.

Conditions CMOS CI95

AMR coded narrowband signal (SAMR−NB[n′]) vs Proposed approach 1.5208 [1.3064; 1.7352]

Modulation technique vs Proposed approach 0.5833 [0.4613; 0.7053]

Cepstral Domain approach vs Proposed approach 1.6944 [1.5030; 1.8859]

evident in Table 3.5, the proposed approach improves the AMR coded narrowband speech signal

by 1.5208 points. CMOS is improved by 0.5833 and 1.6944 points for the proposed approach

in comparison to the modulation technique and cepstral domain approach, respectively. In

subjective evaluation, opinions are taken from the listeners. They gave their opinions in terms

of noise and word perception. Some listeners prefer the less noisy speech signal, while some

prefer the word perception in the speech signal. Noise artifacts are not perceived in enhanced

speech files using the modulation technique, however, enhancement in words is not perceived

well. It may be due to attenuating the estimated high-band signal. For the cepstral domain

approach, noise is perceived higher. For the proposed approach, noise is still perceived, however,

it does not affect the perception of words.

3.3 Conclusion

This work proposes a new ABE approach for speech signals, which uses the H∞ sampled-

data control theory and wideband signal modeling for obtaining a synthesis filter. The H∞

optimization helps in acquiring the synthesis filter corresponding to a signal model (pole-zero

model) and an analysis filter. The synthesis filter contains the high-band spectral envelope

information. For adjusting the energy level of the estimated high-band signal, the gain adjust-

ment and the SFS techniques with a custom modification are used in the proposed bandwidth

extension approach. A DNN model is used for estimating the synthesis filter in the artificial

bandwidth extension framework. The MOS- LQO and CMOS measures are improved by the
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proposed approach in comparison to the baselines. Later on, a different architecture is proposed

in chapter 5 to enhance the results.
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Figure 3.8: Spectrogram of (a) reference wideband speech signal of a female speaker, (b) AMR
coded narrowband signal SAMR−NB[n′] sampled at 16 kHz, (c, d, and e) extended wideband speech

signals using the signals S̃BPF [n′], ŜHB[n′], and 10
d
20 ŜHB[n′] in the proposed framework using DNN

model (see Figure 3.7).
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Figure 3.9: Spectrogram of (a) reference wideband speech signal of a female speaker, (b) AMR
coded narrowband signal sampled at 16 kHz, and (c,d,e) extended speech signals by the proposed
approach, modulation technique, and cepstral domain approach, respectively .
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In the previous chapter, we have concentrated on the wideband signal model and used a highpass

filter to extract the high-band information from the synthesis filter. The major change in this

chapter is to consider this highpass filter in the error system for better optimization.

We know that ABE aims to extend the bandwidth of the narrowband (NB) speech signal (up

to 4 kHz) to 8 kHz. In this chapter, a new ABE approach is proposed based on the high-band

signal modeling. In this context, a signal model is used to represent better the high-band (4-8

kHz) information of a signal. A novel error system is proposed and made by considering the

narrowband signal generation process, bandwidth extension process, and reference/true high-

band signal generation process. Solution of the error system is obtained using the methods

explained in the H∞ sampled-data system theory (as in the earlier chapters) [41–45]. The

solution of the error system is a synthesis filter for the given signal model. The obtained

synthesis filter has high-band (HB) spectral envelope information. The synthesis filter is used

in the bandwidth extension process for synthesizing the high-band (4-8 kHz) signal. The DFT

concatenation is performed to add the narrowband signal sampled at 16 kHz and the estimated

high-band signal sampled at 16 kHz for removing the leaked information from the synthesis

filter and non-ideal low pass filter. Gain adjustment is performed on the estimated high-band

signal to make its energy equal to the true high-band signal. Non-stationary characteristics of

speech signals generate assorted variety in synthesis filters and corresponding gains. For this,

a deep neural network (DNN) is trained to estimate the synthesis filter and gain by using only

the narrowband information. We analyze the performance of the DNN model on two datasets.

Objective and subjective analyses are carried out on these datasets. This chapter is based upon

the paper [61].

The rest of the chapter is organized as follows. Section 4.1 has the proposed set-up used for

ABE. The proposed set-up uses high-band modeling for extracting high-band information. The

proposed approach involves features extraction for designing the DNN model, training of the

DNN model, and wideband signal estimation. Section 4.2 contains the objective and subjective

analyses. Section 4.3 states a brief conclusion to this work.
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4.1 A proposed set-up based on high-band modeling for

artificial bandwidth extension of speech signals

This section describes the proposed ABE framework for a narrowband speech signal con-

sisting of frequency components up to 4000 Hz approximately. A basic block diagram for ABE

is shown in Figure 1.1. As it can be observed in Figure 1.1, a pre-trained model is needed

in advance. The pre-trained model is designed using a database of narrowband features and

high-band features. The pre-trained model for the proposed ABE framework is designed in a

training block, as shown in Figure 4.1. The training block is elaborated in Section 4.1.1. After

designing the pre-trained model, ABE process uses the pre-trained model at the receiver side,

as shown in Figure 1.1. As evident from Figure 1.1, the ABE process consists of four main

processes: high-band features estimation, NB features extraction, bandwidth extension process,

and narrowband signal reconstruction process. These processes play an important role in the

estimation of the wideband (WB) signal. Furthermore, the proposed ABE approach uses three

additional processes. First process is used for adjusting the energy level of estimated high-

band signal. Second is to process the resampled-narrowband signal. Third is to use the DFT

concatenation for adding the processed narrowband signal sampled at 16 kHz and estimated

high-band signal sampled at 16 kHz. An extension block in Figure 4.1 has a description of the

proposed ABE approach for estimating the wideband signal corresponding to the narrowband

signal. The extension block is explained in Section 4.1.2.

4.1.1 Training block

The training block consists of three sequential processes: framing process, features extrac-

tion process, and modeling process. The framing process is performed to produce stationary

speech signals, as explained in Section 4.1.1.1. The features extraction process computes three

features: high-band feature vector YK , narrowband feature vector X, and gain factor g. The

features YK , g, and X are computed in Sections 4.1.1.2, 4.1.1.3, and 4.1.1.4, respectively. The

modeling process trains a DNN model using the features. The modeling process is explained

in Section 4.1.1.5.
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WB Signal
Signal Model HB feature Modelling

↓ 2

YK

NB Feature X

NB Signal

↑ 2

NB Feature X̃ Mapping

ỸK

Kopt

LPF

A

↑ 2 LPF

Framing

Framing

SNB[n]

Gain factor Calculation
g

S
′
NB[n

′]

g̃

×S̃HB [n
′]

Training Block

Extension Block

DFT

Normalizing factor

S
′
NB[n]

SNB[n
′]

× DFT

DFT concatenation

g3
IDFT

SWB[n
′]

S
′
WB[n

′]
OLA

Estimated WB signal

Figure 4.1: Block diagram consists of training of DNN model and artificial bandwidth extension of
the narrowband signal.

4.1.1.1 Framing

Speech signals are segmented into frames, and these frames are considered as stationary

signals. Here, speech signals are windowed into frames of 25 ms duration with 50% overlapping

between adjoining frames using the Hamming window.

4.1.1.2 High-band feature vector extraction

The high-band feature vector YK contains information of the proposed synthesis filter, which

is used in the bandwidth extension process. The bandwidth extension process is employed on

a stationary NB speech signal (NB frame) SNB[n] for estimating the corresponding HB signal

S̃HB[n′], as shown in Figure 4.2, where n and n′ denote 8 kHz and 16 kHz sample index,

respectively. In Figure 4.2, A is a linear discrete time-invariant (LDTI) LP analysis filter, ↑ 2

A ↑ 2 K
SNB[n] S̃HB [n

′
]NBres

Figure 4.2: Bandwidth extension process applied to a stationary narrowband signal in order to
estimate the corresponding high-band signal.

is an ideal upsampler with upsampling factor 2, and filter K is an LDTI synthesis filter. The
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transfer function of filter A is the inverse transfer function of an all-pole filter. The all-pole

filter of order 11 is found using the signal SNB[n] with the help of linear prediction analysis (see

Figure 4.2) [5]. An NB residue signal (NBres) is the response of filter A driven by the signal

SNB[n] [4]. The WB residue signal is an upsampled NB residue signal by a factor of 2. It is

fed into the synthesis filter K in order to estimate the high-band signal S̃HB[n′].

Here, our primary focus is to design the synthesis filter K in order to estimate the HB infor-

mation S̃HB[n′] related to the NB signal SNB[n]. It can be done by considering the NB signal

SNB[n] generation process, bandwidth extension process, and HB signal generation process.

For this, an error system is made, as depicted in Figure 4.3. In Figure 4.3, HPF is a non-causal

A ↑ 2 K
SNB[n]

SWB [n
′
]

HPF
SHB [n

′
]

S̃HB [n
′
]

LPF

e

↓ 2
NBres

−
+

Figure 4.3: An error system set-up.

FIR high pass filter (HPF), which produces the true/original high-band signal SHB[n′]. In high-

band signal generation process, the signal SHB[n′] is generated by high pass filtering of the the

original wideband signal SWB[n′]. In this chapter, we focus on reconstruction of SHB[n′], which

contain information about the high-band frequencies. This is justified as narrowband informa-

tion is available at the receiver end and we can utilize it as it is. LPF is a non-causal FIR

low pass filter. In the narrowband signal generation process, the narrowband signal SNB[n] is

generated by passing the wideband signal SWB[n′] through the LPF and subsequent downsam-

pling by a factor of 2 at the transmitter side. The synthesis filter K is designed for minimizing

the reconstruction error. We use a system norm to measure the reconstruction error [59]. In

Figure 4.3, e = SHB[n′]− S̃HB[n′], i.e., the error between the true HB signal and estimated HB

signal. To minimize the error, it is beneficial to extract prior information associated with the

wideband speech signal SWB[n′]. A signal model F is used to represent the prior information

of the signal SWB[n′]. It is taken into account for Figure 4.3, and the resulting set-up is shown

in Figure 4.4. Here, H0 and H1 denote the LPF and HPF, respectively. The signal SWB[n′] is

the output of the signal model F driven by an input w with known features (with finite energy,
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A ↑ 2 K
SNB[n]

SWB [n
′
]

H1
SHB [n

′
]

S̃HB [n
′
]

H0

e

↓ 2
NBres

−
+

F
w

Figure 4.4: A proposed architecture of the error system set-up for estimating the high-band signal.

specifically w ∈ `2(Z,Rn)). F (z) representing the rational transfer function of F , is assumed

to be a stable and causal transfer function. This model can be obtained by Prony’s method,

available in MATLAB [62, 63]. The obtained model is causal but may be unstable. Hence,

it is converted into a stable model by inverting its unstable poles. This does not affect the

magnitude spectrum of F (z) but changes the phase [40]. The human auditory system is less

sensitive to phase of the speech signal [40]. Further, the number of poles and zeros in the signal

model was empirically calculated for each frame in such a way that the minimizes the error.

In Figure 4.4, H1F and H0F denote the signal models G1 and G2 defined in (1.3), respectively.

Signal models G1 and G2 have the spectral envelope information of the high-band signal (16

kHz) and narrowband signal (16 kHz), respectively. When compared to (1.3), we can easily see

that G1 = H1F and G2 = H0F in Figure 4.4. The signal of interest is the high-band signal

SWB[n′]. Hence, high-band modeling is performed.

Problem formulation

We solve the following optimization problem for designing an optimal K(z).

Problem 3. Given a stable and causal transfer function F (z), two non-causal FIR filters H0(z)
and H1(z), design an optimal stable and causal synthesis filter Kopt defined as

Kopt := arg min
K

(‖P‖∞), (4.1)

where P := H1F −K(↑ 2)A(↓ 2)H0F . P maps w to e in Figure 4.4. Here, ‖P‖∞ represents the
H∞-norm of the system P.

Solution of Problem 3

Problem 3 is solved to obtain an optimal filter Kopt. Filters H0 and H1 present in system P

are non-causal systems. Thereby, system P is a non-causal system. Hence, this system needs

to be converted into a causal system for obtaining the solution using the solution given in
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Appendix B. FIR filters H0 and H1 have a relation to each other, which can be written in

z-domain [48]

H1(z) = H0(−z). (4.2)

Consider the FIR filter H0(z)

H0(z) =aQz
−Q + ..+ a1z

−1 + a0 + a1z
1 + ...+ aQz

Q,

=zQHa(z), (4.3)

with Ha(z) := (aQz
−2Q + ..+ a1z

−(Q+1) + a0z
−Q + a1z

−(Q−1) + ...+ aQ) with ai ∈ R and Q can

be assumed as an even integer number without the loss of generality. The filter H1(z) can be

obtained by substituting (4.3) into (4.2), i.e.,

H1(z) = zQHa(−z) (4.4)

Next, we replace H0(z) by (4.3) and H1(z) by (4.4) in the system P as

P(z) =zQHa(−z)F (z)−K(z)(↑ 2)A(z)(↓ 2)zQHa(z)F (z),

=zQ(Fb(z)−K(z)(↑ 2)A(z)(↓ 2)Fa(z)), (4.5)

where Fb(z) := Ha(−z)F (z) and Fa(z) := Ha(z)F (z). Further, the system P is transformed

into a causal system by delaying its response to Q samples as

P =z−QP, (4.6)

where the system P is a causal system. The H∞-norm of the system P is equivalent to the

original system P due to the fact that the delaying process does not change the H∞-norm of the

system [1]. Further, the solution of (4.6) is obtained using the solution given in Appendix B
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wherein the system P is converted into the generalized error system (see Figure B.1) as follows

G1(z) = Fb(z),

G2(z) = Fa(z),

G3(z) = A(z),

Kd(z) = K(z). (4.7)

The obtained optimal filter K (Kopt) contains the high-band information of the wideband signal.

Filter K has infinite impulse response (IIR). So, it is converted into an approximate FIR filter

by truncating the Taylor series of K at the origin, which is taken as the high-band feature

vector YK. The number of coefficients in the FIR filter is taken 20 experimentally, as explained

in Section 4.2.

4.1.1.3 Gain factor calculation

The estimated HB signal S̃HB[n′] can have different energy level from the corresponding

true high-band information present in SWB[n′]. Hence, a gain g factor is calculated as

g =

√√√√√√

∑N
2

k=N
4
+1
|SWB[k]|2

∑N
2

k=N
4
+1
|S̃HB[k]|2

, (4.8)

where, SWB[k] and S̃HB[k] are the discrete Fourier transforms (DFTs) of SWB[n′] and S̃HB[n′],

respectively. k represents the frequency bin index. N is the number of samples in a signal

sampled at 16 kHz.

4.1.1.4 Narrowband feature vector extraction

The narrowband information is represented by line spectral frequencies (LSF) [65], which

are computed using the narrowband signal SNB[n]. The dimension of the NB feature vector X

is fixed to 11.

66

TH-2564_156102023



4.1 A proposed set-up based on high-band modeling for artificial bandwidth extension
of speech signals

4.1.1.5 Modeling

In modeling process, a DNN model is trained, which is taken as the pre-trained model.

The DNN model is structured using the NB features, high-band features, and gain factor. The

NB feature vector X ∈ R11 is taken as the input of the DNN model. A vector W ∈ R21 is

obtained by concatenating the high-band feature vector YK ∈ R20 and gain factor g ∈ R,

i.e., W = [YK , g]. W is taken as the output of the DNN model. The mean and variance

normalization (MVN) has been applied to both the input and output vectors of the DNN

model using the statistics obtained for the training set [36].

4.1.2 Extension block

In the extension block, the pre-trained DNN model designed in Section 4.1.1.5 is used for

the artificial bandwidth extension of the narrowband signal. The wideband signal is synthe-

sized using the four processes: narrowband signal process, mapping process for estimating

the high-band feature vector and gain factor, high-band signal estimation, and wideband sig-

nal estimation using the DFT concatenation, as explained in Sections 4.1.2.1, 4.1.2.2, 4.1.2.3,

and 4.1.2.4, respectively.

4.1.2.1 Narrowband signal process

The NB signal S ′NB[n] sampled at 8 kHz is converted into 16 kHz sampling rate signal. For

this, S ′NB[n] is passed through the upsampler ↑ 2 followed by the LPF. The resulting NB signal

SNB[n′] is multiplied by a normalizing factor g3 calculated as

g3 =
max(S ′NB[n])

max(SNB[n′])
,

and the resulting signal is the final NB signal S ′NB[n′] (see Figure 4.1). This factor makes the

peak value of S ′NB[n′] equal to the peak value of S ′NB[n], which improves the results as seen

later in Section 4.2.
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4.1.2.2 Mapping process

We have the only narrowband signal. So, we compute the NB feature vector X̃ using the

given stationary NB signal S ′NB[n], as done in Section 4.1.1.4. In the mapping process, the NB

feature vector X̃ is fed into the pre-trained DNN model, and the resulting output of DNN gives

the estimated feature vector W̃ = [ỸK , g̃].

4.1.2.3 Estimation of the high-band signal

The estimated HB feature vector ỸK has the filter coefficients of filter Kopt, which is used

in the estimation of HB signal S̃HB[n′] (see Section 4.1.1.2 and Figure 4.1).

4.1.2.4 Wideband signal estimation using the DFT concatenation

We are not going to add S ′NB[n′] and S̃HB[n′] signals directly for estimating the WB signal.

Because both signals are not fully ideal, i.e., S ′NB[n′] and S̃HB[n′] have some HB information and

NB information, respectively. Therefore, we are going to add them in the frequency domain.

For this, N -point DFTs of S ′NB[n′] and S̃HB[n′] are computed and denoted by S ′NB[k] and

S̃HB[k], respectively. Then, the initial N
2

+1 DFT points of S ′WB[k] are obtained by considering

the initial N
4

+ 1 DFT points of S ′NB[k] and the N
4

+ 1 to N
2

DFT points of S̃HB[k], i.e.,

S ′WB[k] =




S ′NB[k], k = 0, ..., N

4

g̃S̃HB[k]. k = N
4

+ 1, ..N
2





Rest DFT points between N
2

+ 1 to N − 1 of S ′WB[k] are obtained by its initial N
2

+ 1 DFT

points as

S ′WB[k] = S ′WB

[
N
2
− i
]
,
i = 1, 2, ..N

2
− 1,

k = N
2

+ i.

Here, we call this entire process as DFT concatenation. The inverse DFT (IDFT) S ′WB[k] is

producing the estimated wideband signal S ′WB[n]. The DFT concatenation discards the leaked

information from the non-ideal low pass filter and filter Kopt. Afterward, the full wideband

speech signal is obtained by using the overlap add method (OLA) [71] from the estimated
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wideband signals of different frames.

4.2 Experiment analysis and results

In this section, we performed experiments to establish correctness and effectiveness of the

proposed approach. Section 4.2.1 has a description of speech datasets and parameters used

for evaluating the proposed approach. In Section 4.2.2, objective metrics are discussed, ex-

periments are conducted for deciding the number of coefficients in the FIR synthesis filter,

and performances are analyzed at various parts in the proposed framework of ABE. In Sec-

tion 4.2.3, experiments are conducted for deciding the DNN topology. The comparison of the

performances between the proposed approach and the existing approaches has been discussed

in Section 4.2.4. In Section 4.2.5, a subjective assessment is carried out to check the speech

perceptual quality.

4.2.1 Databases and parameters

The proposed approach is evaluated on the two datasets: TIMIT dataset [73] and RSR15

dataset [74]. The train set of TIMIT dataset is used to extract training features for training the

DNN model, while the test set of TIMIT dataset is considered as a validation set for deciding

the DNN architecture. A new test set is constructed using the RSR15 dataset. This new test

set has the speech files uttered by 4 female and 3 male speakers. The DNN model is tested on

the test set.

In Figure 4.1, filters LPF and HPF are needed. These filters are the non-causal FIR filters,

as considered earlier. Firstly, a causal FIR LPF of length 41 is constructed by following the two

sequential processes: one is to generate an FIR LPF filter using the command firls in MATLAB,

and the second is to multiply the obtained filter with the Kaiser window in MATLAB [63]. The

non-causal FIR LPF filter H0 (symmetric about the y-axis) is then obtained by advancing the

impulse response of obtained causal FIR LPF filter to 20 samples. The filter H1 is designed

directly from the filter H0 by following (4.2).
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4.2.2 Objective analysis

In this work, upper-band (4-8 kHz) logarithmic spectral distance (LSDUB), full-band (0-8

kHz) logarithmic spectral distance (LSDFB) [39], narrowband MOS-LQO (mean opinion score

listening quality objective) [79, 80], and wideband MOS-LQO [81, 82] as objective measures

are taken for examining the quality of artificially extended speech signals. The mathematical

formulations of these measures are presented in Appendix C.

Further, we convert the IIR filter Kopt into an approximate FIR filter by using the Taylor

series truncation method. For deciding the number of coefficients in FIR, we evaluate the

objective measures produced by the FIR filters of different lengths on the validation set, as

arranged in Table 4.1. Here, we choose the filter length 20 because of obtaining the moderate

Table 4.1: Performance evaluation on the validation set in condition of direct use of FIR filter
obtained by truncating the impulse response of IIR Kopt in Figure 4.1 for ABE.

Filter length 11 15 20 25 30

LSDFB 6.2814 6.2951 6.3059 6.3199 6.3286

LSDUB 8.3901 8.4132 8.4312 8.4518 8.4651

Narrowband MOS-LQO 4.5200 4.5200 4.5201 4.5201 4.5201

Wideband MOS-LQO 3.5533 3.5480 3.5609 3.5469 3.5563

measures.

The objective measures are analyzed by including the normalizing factor g3, proposed filter

with the DFT concatenation, and gain factor (see Section 4.1) in the proposed framework. For

this, we use the proposed FIR filter Kopt directly (oracle Kopt) in Figure 4.1 for estimating

the WB signal. Then, WB signals sampled at 16 kHz are estimated with the help of three

different outputs such as SNB[n′], S ′NB[n′] = g3SNB[n′], and S ′WB[n′] in Figure 4.1. This is

done by applying the OLA method directly on them for computing the corresponding WB

signal. The objective measures are computed in Table 4.2 on the validation set for these three

conditions. As it can be observed in Table 4.2, the measures LSDFB, LSDUB, and wideband

MOS-LQO are improved for the signal S ′NB[n′], while the narrowband MOS-LQO is slightly

degraded in comparison to the signal SNB[n′]. After synthesizing the HB signal S̃HB[n′] using
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Table 4.2: Performance evaluation on the validation set for the signals SNB[n′], S′NB[n′] = g3SNB[n′],
S′WB[n′] in Figure 4.1 for ABE.

Conditions SNB[n′] S ′NB[n′] S ′WB[n′]

LSDFB 13.7871 10.0571 6.3059

LSDUB 17.7817 13.8457 8.4312

Narrowband MOS-LQO 4.5417 4.5201 4.5201

Wideband MOS-LQO 3.8670 3.8822 3.5609

the oracle FIR filter Kopt, the wideband signal is estimated using the DFT concatenation along

with gain, which improves the LSDFB by 3.7512 dB, LSDUB by 5.4145, and wideband MOS-

LQO by 0.3213 points and maintains the same narrowband MOS-LQO when compared to the

signal S ′NB[n′]. The synthesis filter consists of the spectral envelope information of a signal,

and the gain factor adjusts the energy of the synthesized high-band signal. Therefore, the LSD

is improved using the synthesis filter and the gain factor. The wideband MOS-LQO value is

degraded because of the presence of noise artifacts in the synthesized wideband signal. Further,

we evaluate the performances of the DNN model.

4.2.3 DNN model performance

Firstly, experiments are performed to finalize the DNN architecture. Hyper-parameters such

as learning rate and mini-batch size are decided empirically. These parameters are optimized

as per the best performance on the validation set. For this, the number of hidden layers (NHL)

and the number of units (NU) in hidden layers are selected 3 and 512, respectively. Also, we

fixed Adamax (adaptive moment estimation based on the infinity norm) [83] optimizer, Relu

activation function in hidden layers, and linear activation function in the output layer. For

Adamax optimizer, decay rates β1 for the first-moment estimate and β2 for the second-moment

estimate are fixed to 0.9 and 0.999, respectively. Batch normalization, early stopping criteria,

and L2-regularization are used in designing the DNN model. In addition, the mean-variance

normalization [36] is applied to the feature vectors of the training set, validation set, and test

set by using the statistics obtained for the training set. Next, the learning rate is varied in the

range of 0.5 to 0.001 and the mini-batch size is varied in the range of 128 to 1024. Maximum
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epochs are set to 50. DNN models are designed for different learning rates and mini-batch sizes,

and their performances are analyzed on the validation set, as shown in Table 4.3.

Table 4.3: Objective analysis on the validation set by varying the learning rate and mini-batch size
for the fixed DNN topology with 3 NHL and 512 NU and Relu activation function in hidden layers.

Learning rate Batch size LSDFB LSDUB Narrowband MOS-LQO Wideband MOS-LQO

0.5 512 6.8344 9.2136 4.5201 3.0494

0.1 512 6.8022 9.1659 4.5201 3.0918

0.01 512 6.8602 9.2516 4.5201 2.9815

0.001 512 7.4642 9.6443 4.5201 2.6681

0.1 128 6.7867 9.1426 4.5201 3.1054

0.1 256 6.8074 9.1736 4.5201 3.0834

0.1 768 6.7819 9.1359 4.5201 3.1154

0.1 1024 6.8002 9.1626 4.5201 3.0947

It can be observed that DNN model trained using 0.1 (learning rate) and 768 (mini-batch

size) performs better. Therefore, these values are fixed in further experiments. Further, different

DNN models are designed by changing the number of hidden layers (NHL) and the number of

units (NU) in hidden layers. Then, the objective analysis is done on the validation set in

Table 4.4. In Table 4.4, the narrowband MOS-LQO is not affected by any architecture, i.e.,

Table 4.4: Objective analysis on the validation set by varying the number of hidden layers (NHL)
and the number of units (NU ) in hidden layer for the fixed batch size 768, and Relu activation function
in hidden layers.

NHL NU LSDFB LSDUB Narrowband MOS-LQO Wideband MOS-LQO

128 5 6.7894 9.1506 4.5201 3.1122

128 6 6.7617 9.1036 4.5201 3.1309

128 7 6.7762 9.1276 4.5201 3.1159

256 5 6.8012 9.1640 4.5201 3.0753

256 6 6.7578 9.1040 4.5201 3.1328

256 7 6.7461 9.0838 4.5201 3.1629

256 8 6.7655 9.1126 4.5201 3.1472

512 4 6.7764 9.1276 4.5201 3.1253

512 5 6.7731 9.1556 4.5201 3.1016

narrowband is not affected in extension by using different estimated synthesis filters due to

the DFT concatenation. An architecture with 7 hidden layers and 256 neurons in each layer
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yields the better LSDFB, LSDUB, and wideband MOS-LQO. This architecture is chosen as the

optimal DNN architecture.

4.2.4 Performances comparison

The proposed approach is compared with the existing approaches keeping the same experi-

mental conditions as LPF, HPF, dimension of HB feature vector, DNN architecture (7 hidden

layers and 256 neurons in each hidden layer), dataset and NB signal processing. Two recently

reported current works such as modulation technique [13] with slight modification and cep-

stral domain approach [39] are included for comparison. Gain for the modulation technique is

calculated by following [55], and the cepstrum features are used for representing the NB infor-

mation as well as the HB spectral envelope information. The NB feature vector and HB feature

vector in the cepstral domain approach contain the NB magnitude spectrum representing the

NB information and the cepstral coefficients representing the HB magnitude spectrum [39],

respectively. Objective measures are arranged in Table 4.5 for the proposed approach and the

existing methods using the same DNN model. The LSD measure is improved by the proposed

Table 4.5: Objective analysis on the test set for the proposed approach and the existing approaches.

Method LSDFB LSDUB Narrowband MOS-LQO Wideband MOS-LQO

Proposed approach 7.9792 10.7610 4.2602 2.8439

Modulation technique 8.3985 11.2912 4.2292 2.9021

Cepstral Domain approach 9.8444 13.4141 4.2601 3.1718

approach rather than the existing approaches, as viewed in Table 4.5. The proposed synthesis

filter has more magnitude information. Therefore, LSDFB and LSDUB measures are improved

by the proposed approach. Word perception is higher for the proposed approach due to bet-

ter LSDFB and LSDUB. The narrowband MOS-LQO is obtained approximately the same for

the proposed approach and cepstral domain approach and improved slightly for the proposed

approach in comparison to the modulation technique. The narrowband region is somewhat

affected by the estimated high-band signal in the modulation technique. Therefore, the nar-

rowband MOS-LQO is slightly degraded. The wideband MOS-LQO value is obtained better by
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Figure 4.5: Spectrogram of: (a) artificially extended speech signal by the cepstral domain approach
using DNN model, (b) artificially extended speech signal by the modulation technique using DNN
model, (c) artificially extended speech signal by the proposed approach using DNN model, and (d)
original WB signal

the cepstral domain approach than the modulation technique and proposed approach. In the

cepstral domain approach, noise artifacts in enhanced speech signals are introduced less than

the proposed approach and modulation technique.

Moreover, we visualize the spectrogram of the artificially extended speech signal by using

the same DNN model for the proposed approach and the existing approaches. In Figure 4.5, the

spectrogram of an artificially extended speech signal is more close to its original spectrogram

for the proposed approach than the existing approaches by using the same DNN model.
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4.2.5 Subjective listening test

The subjective listening test is also done to check the speech quality based on the perception

by following the ITU-T P.800 [86, Annex E]. In this test, speech signals obtained by two condi-

tions are compared with each other by listening, and the rating is done on the comparison MOS

(CMOS) scale from -3 (much worse) to 3 (much better). Twelve speakers do it for 20 speech

signals taken from the test set. As evident in Table 4.5, the modulation technique performs

well in comparison to the cepstral domain approach. Therefore, the CMOS is measured for the

proposed approach with respect to the modulation technique where the CMOS has obtained

0.80 points for the proposed approach.

4.3 Conclusion

In this chapter, a new ABE architecture is proposed, which is based on the high-band

modeling and H∞ optimization. An optimal synthesis filter Kopt is designed with the help of

the H∞ optimization by using a signal model and an analysis filter. The synthesis filter is used

in the estimation of the high-band signal. The filter Kopt is an IIR filter. It is converted into an

FIR filter, and the resulting filter coefficients are represented by the HB feature vector. Besides,

the DFT concatenation is preferred over the time addition for combining the estimated high-

band signal and narrowband signal. It removes the leaked NB information in the estimated

high-band signal and the high-band information in the narrowband signal. DNN model is used

to estimate the synthesis filter information and gain for a given NB feature vector. We obtained

the best LSDFB and LSDUB measures by the proposed approach in comparison to the existing

approaches. The subjective measure is improved by the proposed approach when compared to

the modulation technique.
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5. Artificial bandwidth extension technique based on the mapped high-band modeling

In this chapter, we extend the previous ABE approach proposed in chapter 4. Also, the

proposed approach is compatible with a practical transmitter set-up. The proposed ABE

approach is based on the mapped high-band signal modeling (shifting the high-band frequency

in the narrowband) and H∞ optimization. This is because the H∞ optimization works well in

the narrowband (similar idea was used in a different context [94]). Further, an error system

is proposed for minimizing error in the case of mapped high-band signal modeling. The error

system is built up by combining the narrowband signal generating process, bandwidth extension

process, and reference signal generating process. The reference signal is then the mapped high-

band signal or band pass shifted signal, which is the original high-frequency components shifted

into the narrowband region. A gain factor corresponding to the synthesis filter is computed and

used for adjusting the energy levels of the estimated high-frequency components. Speech signals

have time-varying characteristics. Therefore, several synthesis filters and corresponding gains

are needed for constructing the whole speech signal. Hence, two different deep neural networks

(DNNs) are designed for estimating the synthesis filter information and gain factor. We design

separate DNN models for modeling the synthesis filter and the gain factor. In addition, the gain

factor is computed and modeled in such a way that the gain factor reduces the performance

loss obtained due to error in the predicted synthesis filter.

The rest of the chapter is organized as follows: Section 5.1 contains details of the proposed

ABE framework. The proposed framework considers speech file operations, features derivation

process, training of deep neural networks, and extension of the encoded narrowband signal.

Section 5.2 has details of the databases used for analyzing the proposed approach, measures

used for evaluating the proposed approach, and results analysis. In Section 5.3, the proposed

scheme is compared to the previous schemes. Section 5.4 concludes the proposed approach.

5.1 Proposed framework for the artificial bandwidth ex-

tension of speech signal

A basic block diagram for ABE is shown in Figure 1.1. It can be observed in Figure 1.1,

a pre-trained model is needed in advance. While two pre-trained models are needed in the
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proposed approach. Designing of the pre-trained models are described in Section 5.1.1. As

it can be observed from Figure 1.1, the ABE process consists of four main processes: esti-

mation of the high-band features, NB features extraction, bandwidth extension process, and

narrowband signal reconstruction process. Moreover, the proposed ABE approach utilizes two

additional processes to adjust the energy level of the synthesized high-band signal. In this work,

the (encoded) narrowband signal is enhanced by the proposed bandwidth extension approach.

Section 5.1.2 has an explanation of the proposed artificial bandwidth extension process used at

the receiver end.

5.1.1 Designing of the pre-trained models

This section contains the designing processes of two pre-trained models. The designing pro-

cesses of the pre-trained models consist of the features extraction process and the DNN model

designing process, as shown in Figure 5.1 [70]. The features extraction process includes the

BPFSWB[n
′] ×

(−1)n
′

SBPS [n
′]SBPF [n

′]

SAMR−NB [n]

Synthesis
filter design

YKBPS

NB feature
extraction

DNN-1

Bandwidth
extension

S̃BPS [n
′]

ỸKBPS

×

(−1)n
′

S̃HB [n
′]

BPF

S̃BPF [n
′]

Gain
calculation

b b

DNN-2
b

g

X

g̃

Figure 5.1: Illustrating the training of Deep Neural Networks.

derivation of three features: band pass shifted feature vector YKBPS
, narrowband feature vector

X, and gain factor g. For computing these features, two input signals, the (encoded) narrow-

band signal SAMR−NB[n] and the wideband signal SWB[n′] are needed in advance. Besides these

input signals, one intermediate band pass shifted signal SBPF [n′] is needed. These signals are

obtained by following the processes described in Section 5.1.1.1. Processes for computing the

features YKBPS
, X, and g are described in Section 5.1.1.2, Section 5.1.1.3, and Section 5.1.1.5,

respectively. In Figure 5.1, two DNN models are trained to design the pre-trained models.

Separate DNN models DNN-1 and DNN-2 are designed for modeling the band pass shifted
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5. Artificial bandwidth extension technique based on the mapped high-band modeling

feature vector YKBPS
and gain factor g, respectively. In addition, the gain factor is computed

and modeled in such a way that the gain factor reduces the performance loss obtained due

to error in the predicted synthesis filter. A description for designing the models DNN-1 and

DNN-2 is given in Section 5.1.1.4 and Section 5.1.1.6, respectively.

5.1.1.1 Speech file operations

Speech files are processed for generating speech signals as per the ITU-T protocols at the

transmitter side [2, 56]. Speech files, recorded at 16000 Hz sampling frequency and 16 bits per

sample, are processed to produce the narrowband signal encoded at 12.2 kbps and reference

wideband signal for realistic telephone speech [2, 56, 89]. In addition, the reference band pass

shifted signal or mapped high-band signal is needed in the proposed approach, which is gener-

ated using the reference wideband signal. Processes of producing these signals are explained in

this section.

Narrowband signal production process

A process is drawn in Figure 5.2, which produces an adaptive multi-rate (AMR) coded

narrowband signal. In Figure 5.2, the speech signal sampled at 16 kHz is passed through the

Speech Signal MSIN HQ2P.56 level
adjustment Filterfilter

16 to 13 bit Encoding andDown-
sampler

SHQ2−MSIN [n′]

conversion Decoding
16 to 13 bit
conversion

SAMR−NB [n]

AMR

Figure 5.2: AMR coded narrowband signal production process.

standard mobile station input (MSIN) high pass filter [2] and then scaled to an active speech

level of -26 dBov according to the ITU-T P.56 [90]. The resulting speech signal is filtered by

the standard high-quality low pass filter (HQ2) [2] for removing high-frequency components,

which gives a narrowband signal SHQ2−MSIN [n′] sampled at 16 kHz. n′ denotes the sample

index for 16000 Hz sampling frequency. The signal SHQ2−MSIN [n′] is downsampled by a factor

of 2 using the downsampler. Thus, the obtained narrowband signal sampled at 8 kHz is gone

through an AMR block, which produces the AMR coded narrowband signal SAMR−NB[n], as

shown in Figure 5.2. n represents the sample index for 8000 Hz sampling frequency. The
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5.1 Proposed framework for the artificial bandwidth extension of speech signal

AMR block consists of 16 to 13 bit conversion process, encoding using the adaptive multi-rate

(AMR) narrowband speech codec at 12.2 kbps and decoding process [89], and again 16 to 13

bit conversion process. The signal SAMR−NB[n] is further enhanced using the proposed ABE

framework for synthesizing the frequency components up to 7 kHz.

Wideband signal production process

The speech signal sampled at 16 kHz is passed through the P.341 filter [2] and then scaled

to an active speech level of -26 dBov, which leads to an output signal SWB[n′], as shown

in Figure 5.3. The signal SWB[n′] is taken as the reference wideband signal. The reference

Speech Signal P.341 P.56 level
adjustmentfilter

SWB[n
′]

Figure 5.3: Wideband signal production process.

wideband signal is further used for obtaining the reference band pass shifted signal and for

performance analysis.

Band pass shifted signal (mapped high-band signal) production process

The reference wideband signal is filtered by a band pass filter (BPF), as shown in Figure 5.4.

The resulting signal is taken as a reference band pass filtered signal SBPF [n′]. Here, the band

pass filter passes the frequency components between 4000-7000 Hz (approximately). This band

pass filter is designed by the least square method with the specifications: 40 filter order, lower

stopband frequency of 3660 Hz (called as stopband frequency1), lower passband frequency of

4340 Hz (called as passband frequency1), higher passband frequency of 7000 Hz (called as pass-

band frequency2), and higher stopband frequency of 7800 Hz (called as stopband frequency2).

The BPF is designed using a MATLAB (2019) command designfilt and subsequently multiplied

by the Kaiser window with a shape factor of five. The signal SBPF [n′] has information in

the range of 4000-7000 Hz. The high-frequency components of the signal SBPF [n′] are shifted

into the narrowband region by modulating the signal SBPF [n′] with (−1)n
′
, which yields the

reference band pass shifted signal (mapped high-band signal) SBPS[n′]. Similarly, a reverse

procedure is applied while synthesizing the band pass filtered speech signal.
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BPFSWB[n
′] ×

(−1)n
′

SBPS [n
′]

SBPF [n
′]

Figure 5.4: Band pass shifted signal production process.

All these speech file operations are conducted for each 20 ms frame duration. Each frame is

multiplied with the Hanning window’s square root, keeping 50% overlap between the adjacent

frames in the proposed artificial bandwidth extension framework. The estimated wideband sig-

nals (wideband frames) are multiplied with the Hanning window’s square root and subsequently

combined using the overlap-add method while reconstructing the whole speech signal [71, 72].

5.1.1.2 Band pass shifted feature vector extraction

The band pass shifted feature vector has information of the proposed synthesis filter. The

synthesis filter is used in the bandwidth extension process of the (encoded) narrowband signal.

The synthesis filter has high-band envelope information of a signal, which is present in the

narrowband region of the synthesis filter. The synthesis filter is designed by using the H∞-

optimization. A system is proposed for designing the synthesis filter. The system is built by

combining the process of producing the coded narrowband signal from the narrowband signal

SHQ2−MSIN [n′] (see Figure 5.2), bandwidth extension process (see Figure 5.1) employed at the

receiver side, and reference band pass shifted signal SBPS[n′] (see Figure 5.4). This system is

drawn in Figure 5.5. The output of this system is an error e[n′] between the reference band pass

SBPS [n
′]

SAMR−NB [n] Bandwidth
extension

S̃BPS [n
′]

SHQ2−MSIN [n′] ↓ 2 AMR

- e[n′]

Figure 5.5: A proposed error system.

shifted signal SBPS[n′] and estimated band pass shifted signal S̃BPS[n′]. The estimated band

pass shifted signal is an output of the bandwidth extension process. The bandwidth extension

process is applied to the coded narrowband signal SAMR−NB[n] (see Figure 5.1 and Figure 5.5).

↓ 2 depicts the downsampler with a downsampling factor of 2.
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5.1 Proposed framework for the artificial bandwidth extension of speech signal

The error system has two inputs SHQ2−MSIN [n′], SBPS[n′], and one output e[n′]. The two

inputs of the error system can be converted into a single input by considering the input signal’s

model. The signal model consists of the spectral envelope information of a signal. Further, the

signals SHQ2−MSIN [n′] and SBPS[n′] are represented by their respective signal models. These

signal models are included in Figure 5.5. Therefore, a modified error system is drawn in

Figure 5.6.

SBPS [n
′]

SAMR−NB [n] S̃BPS [n
′]SHQ2−MSIN [n′] ↓ 2 AMR

- e[n′]

A ↑ 2FHQ2−MSIN

FBPS

KBPS

ωd[n
′] Bandwidth extension

Figure 5.6: A proposed error system considers the signal modeling.

In Figure 5.6, FBPS and FHQ2−MSIN are signal models of SHQ2−MSIN [n′] and SBPS[n′]

signals, respectively. The signals SHQ2−MSIN [n′] and SBPS[n′] are generated using the excitation

signal ωd[n
′] with known features (with finite energy, specifically ωd ∈ `2(Z,Rn)). The signal

models are designed by the Matlab function prony based on Prony’s method [91]. This function

takes three input parameters. The first input parameter is an impulse response. The impulse

response is the signal itself in our case. The other two parameters are the number of zeros and

poles. The number of zeros and poles are empirically chosen 1, 15 for designing FHQ2−MSIN ,

respectively, and 3, 15 for designing FBPS. The prony function returns the numerator and

denominator coefficients for the transfer function of a signal model. A few poles and zeros of

the signal model may lie outside of the unit circle. However, a minimum phase system is used

in the H∞ optimization problem. Therefore, those poles and zeros of the signal model lying

outside the unit circle are reflected inside the unit circle. It can be done by inverting their

magnitudes to get the minimum phase system [40]. As a result, the magnitude spectrum of

the signal model is not affected; however, the phase spectrum is changed. This will not affect

the ABE system as the human auditory system is less sensitive to phase information [40]. The

signal models FBPS and FHQ2−MSIN in Figure 5.6 denote the signal models G1 and G2 defined

in (1.3), respectively. The signal models G1 and G2 have the spectral envelope information of

the band pass shifted signal (16 kHz) and the narrowband signal (16 kHz), respectively. In this
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chapter, the signal of interest SBPS[n′] has original high-band information in the narrowband

region.

In Figure 5.6, the bandwidth extension process is given. This process consists of the LP analysis

filter A, upsampler with an upsampling factor, and synthesis filter KBPS. For computing filter

A, an all-pole model (order 11) of the signal SAMR−NB[n] is obtained using the linear prediction

(LP) analysis [5]. Further, filter A is obtained by inverting the all-pole model. The signal

SAMR−NB[n] is fed to the analysis filter A. The output of filter A is a narrowband residual

signal. The narrowband residual signal is upsampled by a factor of 2 and subsequently filtered

by the synthesis filter KBPS.

Problem formulation

The filter KBPS is designed by following optimization problem.

Problem 4. Given the signal models FHQ2−MSIN , FBPS, and analysis filter A, design an optimal
stable and causal filter KBPSopt defined as

KBPSopt := arg min
KBPS

(‖T‖∞), (5.1)

where T is the discrete error system defined as

T := FBPS −KBPS(↑ 2) A (AMR)(↓ 2)FHQ2−MSIN , (5.2)

with input ωd[n
′] and output e[n′] (see Figure 5.6). Here, ‖T‖∞ represents the H∞-norm of the

system T.

Solution of Problem 4

Problem 4 is solved for designing the filter KBPS used in the bandwidth extension process.

To make Problem 4 mathematically tractable, an ideal AMR block (i.e., AMR=1) is assumed

only for solving Problem 4.
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5.1 Proposed framework for the artificial bandwidth extension of speech signal

The error system T is converted into the generalized error system (see Figure B.1) as follows

G1(z) = FBPS(z),

G2(z) = FHQ2−MSIN(z),

G3(z) = A(z),

Kd(z) = KBPS(z). (5.3)

Further, Problem 4 is solved using the solution given for the generalized error system in Ap-

pendix B. The obtained synthesis filter KBPS consists of the high-band spectral envelope in-

formation of a signal in the narrowband region. An impulse response of the filter KBPS has

infinite terms, i.e., the filter KBPS is an infinite impulse response (IIR) filter. It needs to be

converted into a finite impulse response (FIR) for taking it in practical usage. This is done

by truncating the Taylor series. The number of terms in the FIR synthesis filter is chosen 15

empirically (see Section 5.2.3.1). The FIR synthesis filter is taken as the band pass shifted

feature vector YKBPS
.

5.1.1.3 Narrowband feature vector extraction

The narrowband envelope information is taken in terms of the sixteen line spectral fre-

quencies (LSFs) [16]. The LSFs are computed for the coded narrowband signal SAMR−NB[n].

Also, five other features such as kurtosis, zero-crossing rate, spectral centroid, gradient index,

and normalized relative frame energy are taken for capturing the detailed attributes of signal

SAMR−NB[n] [13, 92, 93]. These five features and the LSFs are concatenated. The resulting

feature vector is represented by xi ∈ R21. Further, temporal characteristics are taken into

account by considering adjacent frame’s information. The final narrowband feature vector of

63 dimensions is constructed similarly to [13]. The narrowband feature vector X is composed

as

X =

[
xi, xi+1 − xi−1, xi+1 − 2xi + xi−1

]
,

where i, i− 1, and i+ 1 denote present frame, previous frame, and next frame, respectively.
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5.1.1.4 Designing of DNN-1 model

The DNN-1 model is designed using the narrowband feature vector X and band pass shifted

feature vector YKBPS
. The feature vector X is taken as the input of the DNN-1 model. The

feature vector YKBPS
is taken as the output of the DNN-1 model. The min-max normalization

has been applied to the input vector of the DNN-1 model. No normalization is applied to the

output of the DNN-1 model. Mean squared error as a loss function is selected for training the

DNN-1 model (see DNN-R in [13]).

5.1.1.5 Gain factor computation

The gain factor is computed for adjusting the energy of the estimated band pass filtered

signal. The narrowband feature vector X is fed to the DNN-1 model, which yields an estimated

band pass shifted feature vector ỸKBPS
. The estimated band pass shifted feature vector ỸKBPS

is used in the bandwidth extension process for estimating the high-band spectral envelope, as

shown in Figures 5.1, 5.6, and 5.7. The resulting signal is the estimated band pass shifted signal

SAMR−NB [n]
Bandwidth
extension

S̃BPS [n
′]

ỸKBPS

×

(−1)n
′

S̃HB [n
′]

BPF
S̃BPF [n

′]

Figure 5.7: Estimation of the band pass filtered signal.

S̃BPS[n′], which has high-band envelope information in the narrowband region. Therefore, the

narrowband region of the signal S̃BPS[n′] is shifted into the high-band region by modulating the

signal S̃BPS[n′] with (−1)n
′
. The modulated signal is an estimated high-band signal S̃HB[n′].

Further, the signal S̃HB[n′] passes through the band pass filter, which yields the estimated band

pass filtered signal S̃BPF [n′]. The gain factor is computed as follows

g =

√∑N
n′=1 S

2
BPF [n′]∑N

n′=1 S̃
2
BPF [n′]

, (5.4)

where SBPF [n′] and S̃BPF [n′] are the reference band pass filtered signal and the estimated band

pass filtered signal, respectively.
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5.1.1.6 Designing of DNN-2 model

The DNN-2 model is designed using the narrowband feature vector X and gain factor g.

The feature vector X is taken as the input of the DNN-2 model. 2 log10 g is taken as the output

of the DNN-2 model. The min-max normalization is applied to the input vector of the DNN-2

model. The mean and variance normalization is applied to the output of DNN-2 model. Mean

squared error as a loss function is selected for training the DNN-2 model (see DNN-R in [13]).

5.1.2 Extension of the AMR coded narrowband signal

This section has a discussion of the artificial bandwidth extension process, as outlined

in Figure 5.8. Pre-trained models DNN-1 and DNN-2 are used in the artificial bandwidth

extension process. The artificial bandwidth extension process involves five main processes:

narrowband signal reconstruction, band pass shifted feature vector prediction, gain factor pre-

diction, high-band signal estimation, and wideband signal synthesis, as elaborated in Sec-

tions 5.1.2.1, 5.1.2.2, 5.1.2.3, 5.1.2.4, and 5.1.2.5, respectively.

SAMR−NB [n]
Bandwidth
extension

S̃BPS [n
′]

ỸKBPS

×

(−1)n
′

S̃HB [n
′]

BPF
S̃BPF [n

′]

NB feature
extraction

DNN-2

DNN-1

g̃

×

b

b
ŜBPF [n

′]

↑ 2 HQ2

SFS
SAMR−NB [n

′]

×

b

+

d

S̃WB

X

Figure 5.8: Illustrating the artificial bandwidth extension of the coded narrowband signal.

5.1.2.1 Narrowband signal reconstruction process

The narrowband signal reconstruction process is used to resample the narrowband signal.

The AMR coded narrowband signal SAMR−NB[n] sampled at 8 kHz is resampled at 16 kHz.

For this, the signal SAMR−NB[n] is upsampled by a factor of 2 and subsequently filtered by the
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HQ2 low pass filter. This leads to an output signal SAMR−NBs[n
′] sampled at 16 kHz, as shown

in Figure 5.8.

5.1.2.2 Band pass shifted feature vector prediction

The band pass shifted feature vector is estimated, which is used in bandwidth extension

of the AMR coded narrowband SAMR−NB[n]. For this, the narrowband feature vector X is

computed using the signal SAMR−NB[n]. The feature vector X is normalized by min-max

normalization. Then, the normalized narrowband feature vector X is fed to the DNN-1 model,

which produces the estimated band pass shifted feature vector ỸKBPS
.

5.1.2.3 Gain factor prediction

The gain factor is predicted for adjusting energy level of the estimated band pass filtered

signal. For this, the min-max normalized feature X as computed in Section 5.1.2.2 is fed to

the DNN-2 model. Further, an output of the DNN-2 model is de-normalized by applying the

reverse mean and variance normalization procedure, which yields a scalar value g̃1. Further,

the estimated gain factor g̃ is computed as g̃ = 10(g̃1/2). .

5.1.2.4 High-band signal estimation

The high-band signal S̃HB[n′] is estimated using the predicted band pass shifted feature

vector ỸKBPS
. The signal S̃HB[n′] for a given signal SAMR−NB[n] is obtained by following

Figures 5.6 and 5.7.

5.1.2.5 Wideband signal synthesis

The wideband signal is estimated by adding the resampled narrowband signal and the mod-

ified estimated high-band signal obtained using the estimated gain factor and an attenuation

factor. The estimated gain factor and attenuation factor are used to control the energy level

of the estimated high-band signal. For this, the signal S̃HB[n′] is fed into the band pass filter

for extracting the desired frequency components, as shown in Figure 5.7. The obtained signal

S̃BPF [n′] is multiplied with the estimated gain factor g̃, which gives an output signal ŜBPF [n′].
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The spectral floor suppression (SFS) technique [13] is used for controlling the synthesized

energy of the signal ŜBPF [n′]. Further, a ratio RSFS is computed as

RSFS =

1
N/4

∑(N/2)+1
k=(N/4)+2 |φ̂BPF [k]|2

1
(N/4)+1

∑(N/4)+1
k=1 |φ̂AMR−NB[k]|2

, (5.5)

where φ̂BPF [k] and φ̂AMR−NB[k] are power spectrum densities of the signals ŜBPF [n′] and

SAMR−NB[n′], respectively. An attenuation factor is calculated as

d = min

{
dhigh − dlow

θSFS
RSFS + dlow, dhigh

}
dB, (5.6)

where dhigh = −7 dB, dlow = −13 dB, and θSFS = 5. These parameter values have been chosen

empirically in the proposed ABE framework.

Finally, the wideband signal is estimated by adding the signal SAMR−NB[n′] and an estimated

high-band signal obtained by applying the attenuation factor d on ŜBPF [n′] defined as

S̃WB[n′] = SAMR−NB[n′] + 10
d
20 ŜBPF [n′], (5.7)

where S̃WB[n′] is the estimated wideband signal.

5.2 Speech databases, measures, and results analysis

Experiments are conducted to analyze the performance of the proposed ABE framework.

The Performance of the proposed ABE approach is analyzed on speech samples, which are

described in Section 5.2.1. Measures are chosen for analyzing the performance of the proposed

ABE framework, which are discussed in Section 5.2.2. Results are discussed in Section 5.2.3.

5.2.1 Databases

The proposed ABE framework is analyzed on the two datasets: TIMIT dataset [73] and

RSR15 dataset [74]. These datasets have speech samples, which are recorded at 16000 Hz

sampling frequency and 16 bits per sample. The speech samples are processed, as done in

Section 5.1.1.1. The TIMIT dataset is already segmented into two sets: training set and test

set. The training set is used for training the DNN models, while the test set is considered as a
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validation set in our analysis. A test set is constructed by taking speech files from the RSR15

dataset. The test set consists of the speech files spoken by 4 female and 3 male speakers. The

test set is taken from a different database, which leads to more generalized results.

5.2.2 Measures for performance evaluation

For measuring the performance, we use the wideband perceptual evaluation of speech qual-

ity (PESQ) in terms of the wideband mean opinion score listening quality objective (MOS-

LQO) [81,82], upper-band (4-7 kHz) logarithmic spectral distance (LSDUB), and full-band (0-7

kHz) logarithmic spectral distance (LSDFB) (see Appendix C.) [78].

5.2.3 Results analysis

In this section, results are analyzed and discussed. The IIR synthesis filter KBPS is to be

converted into an FIR synthesis filter to take it in practical usage. The number of terms in

the FIR synthesis filter is decided in such a way that the FIR synthesis filter gives the best

wideband MOS-LQO using a DNN architecture. It is started with choosing the number of

terms 15 in the FIR synthesis filter. Initially, the DNN architecture is designed for the FIR

synthesis filter length 15 and then compared with the other lengths such as 5, 10, 20, and 25.

The coefficients of each FIR synthesis filter are divided by the maximum value of coefficients

before designing the deep neural network architecture. The DNN model is then designed in

Section 5.2.3.1 to decide the synthesis filter length and model the synthesis filter. Another

DNN model is designed for modeling the gain factor in Section 5.2.3.2. The proposed approach

is compared with two baselines in Sections 5.2.3.3 and 5.2.3.4. Section 5.2.3.3 has the objective

comparison. Section 5.2.3.4 has the subjective comparison.

5.2.3.1 DNN-1 model architecture

An architecture of DNN is decided using the feature vectors X and YKBPS
empirically. The

feature vector YKBPS
consists of the coefficients of the FIR synthesis filter. The feature vectors

X of all the sets (training set, validation set, and test set) are normalized using the statistics,

which are computed using the training set only. The batch size and learning rate have been
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fixed to 128 and 0.00001 for training the DNN model, respectively. The activation function

ReLU has been set for the hidden layers, and linear has been set for the output layer. L2 and

L1 regularization for the output layer weights are employed to avoid the risk of over-fitting [70].

Values of L2 and L1 regularizations are fixed to 0.0001 and 0.0001, respectively. A stopping

criterion is chosen as the minimum validation error. Training of the DNN model is stopped if

the validation error does not improve for 7 epochs. Different DNN architectures are trained

and designed by varying the number of hidden-layers and the number of hidden-layer neurons.

Predicted outputs of the validation set, generated from different DNN architectures, are used

in the bandwidth extension approach. Here, the bandwidth extension approach is implemented

without the SFS technique, i.e., d = 0 dB. Also, the gain factor g corresponding to the predicted

synthesis filter, used in bandwidth extension, is computed using (5.4). The wideband MOS-

LQO values are computed for the extended speech signals of the validation set using different

DNN architectures and then compared in Table 5.1.

Table 5.1: Computation of wideband MOS-LQO for the validation set with varying the DNN archi-
tecture

Number of hidden-layers 2 2 2 2 3 3 3 3

Number of Neurons in each hidden-layer 32 64 128 256 32 64 128 256

Wideband MOS-LQO 3.4024 3.4216 3.3846 3.3804 3.3716 3.3717 3.4041 3.4073

This DNN architecture with 2 hidden layers and 64 neurons in each hidden layer is decided,

which gives the best wideband MOS-LQO value for the validation set. Further, this architecture

is trained for the other lengths such as 5, 10, 20, and 25. The wideband MOS-LQO for the

validation set is computed by varying the FIR synthesis filter length used in the DNN model

and listed in Table 5.2. The wideband MOS-LQO value is obtained better by using the filter

Table 5.2: Wideband MOS-LQO computation for the extended speech signals of the validation set
using the DNN architecture designed with 2 hidden layers and 64 neurons.

FIR synthesis Filter Length 5 10 15 20 25

MOS-LQO 3.3377 3.3646 3.4216 3.3852 3.3620
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length 15 than the other lengths. DNN architecture with 2 hidden layers and 64 neurons in

each hidden layer is further named as the DNN-1 model used for estimating the FIR synthesis

filter.

Furthermore, parameters dhigh, dlow, and θSFS used in the spectral floor suppression are

decided empirically. These parameters are decided based on the wideband MOS-LQO value

for the validation set. It is done using the predicted outputs from the DNN-1 model in the

bandwidth extension process and computing the gain factor using (5.4). The values of dhigh,

dlow, and θSFS are chosen -7 dB, -13 dB, and 5 over a wide range, respectively. These parameters

value is chosen in such a way that the SFS technique reduces noise artifacts present in speech

sounds. The MOS-LQO value for the validation set is obtained 3.7502 points using these values.

5.2.3.2 DNN-2 model architecture

Another architecture of DNN is designed for estimating the gain factor, which is designed

by using the narrowband feature vector X and gain factor g. X and g are normalized using

the statistics obtained for the training set. X is normalized using the min-max normalization,

while g is normalized using mean and variance normalization. The batch size and learning

rate are chosen 512 and 0.001, respectively. The L2 regularization for the layer weights has

been used. The value of the L2 regularization is chosen 0.00001. The stopping criterion is

selected as the minimum validation error. Different DNN architectures, made by varying the

number of hidden layers and the number of neurons, are then trained. These architectures are

tested on the validation set, as done in designing the DNN-1 model. The wideband MOS-LQO

values are computed for the extended speech signals of the validation set using different DNN

architectures and then compared in Table 5.3.

Table 5.3: Computation of wideband MOS-LQO for the validation set with varying the DNN archi-
tecture

Number of hidden-layers 2 2 2 2 3 3 3 3

Number of Neurons in each hidden-layer 128 256 512 1024 128 256 512 1024

Wideband MOS-LQO 2.9362 2.9361 2.9776 2.9196 2.9476 2.9775 2.9644 2.9241
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Table 5.4: Performance evaluation on the test set for the proposed approach and baselines.

Method LSDUB (dB) LSDFB (dB) MOS-LQO

Proposed approach 15.8544 12.1325 3.3400

Modulation technique 19.8696 14.5247 3.1332

Cepstral domain 11.4070 9.7390 2.7540

An architecture designed with 2 hidden layers and 512 neurons in each hidden layer is

selected, which produces the best wideband MOS-LQO for the validation set. This architecture

is selected as the DNN-2 model.

5.2.3.3 Objective comparison with baselines

In this section, a comparison of the proposed ABE framework with two baselines is discussed.

The baselines are the cepstral domain approach [39] and the modulation technique [13]. The

cepstral domain ABE approach synthesizes the high-band information using the high-band

magnitude spectrum of a signal. The high-band magnitude spectrum is obtained by the linear

frequency cepstral coefficients, which are predicted using a DNN model. The phase of high-band

region is directly estimated using the phase of narrowband region. The modulation technique

is based on the source-filter model. The high-band envelope information in the modulation

technique is obtained by the linear frequency cepstral coefficients, which are predicted using a

DNN model. For estimating the high-band residual, the spectral translation method is utilized.

Experimental conditions such as window duration, type of window, datasets, and narrowband

processing have been fixed in our implementation of the baselines and proposed approach.

The objective measures are computed for the proposed framework and baselines on the test

set as listed in Table 5.4. As it can be observed from Table 5.4, the proposed method improves

the MOS-LQO value by 0.2068 and 0.5860 points compared to the modulation technique and

cepstral domain approach, respectively. The proposed method reduces the upper-band loga-

rithmic spectral distance (LSDUB) by 4.0152 dB and the full-band logarithmic spectral distance

(LSDFB) by 2.3922 dB when compared to the modulation technique. The proposed method

increases the LSDUB by 4.4474 dB and the LSDFB by 2.3935 dB when compared to the cepstral
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domain approach. The proposed method produces the moderate LSDUB, LSDFB, and the best

MOS-LQO when compared to the baselines. The better MOS-LQO may produce better speech

quality of the speech signal. The cepstral domain approach produces the best LSDUB, LSDFB,

and the worst MOS-LQO. The worst MOS-LQO may give more noise artifacts in the extended

speech signal. The modulation technique gives the worst LSDUB, LSDFB, and the moderate

MOS-LQO. The worst LSD may result less perception of speech sounds.

The spectrogram of a speech file is further observed and discussed. For this, a female

speech file is taken from the test set. The spectrogram of the female speech file is shown in

Figure 5.9. Figure 5.9 (a), (b), (c), (d), and (e) show spectrogram of the reference female

speech signal, AMR coded narrowband speech signal sampled at 16 kHz, bandwidth extended

speech signals by the proposed approach, modulation technique, and cepstral domain approach,

respectively. It can be observed in Figure 5.9 (e), a pattern like noise is seen in spectrogram

of the extended speech signal by the cepstral domain approach. As a result, energy in the

estimated high-band region is high. But this noise affects the speech quality. However, this

noise is not seen in Figure 5.9 (c, d). Therefore, the speech quality is better for the proposed

approach and modulation technique than the cepstral domain approach. Energy present in

the high-band region of bandwidth extended speech signal is higher for the proposed approach

than the modulation technique. This may produce a better perception of speech sounds for the

proposed approach than the modulation technique. Some noise may be present in the extended

speech signal generated by the proposed approach, however, it does not affect the perception

of sounds.

5.2.3.4 Subjective comparison

A subjective listening test is conducted to examine the perceptual quality of speech signals.

It has been done by following ITU-T P.800 [86, Annex E]. In the listening test, two speech

files are compared to each other by considering the speech characteristics like noise artifacts,

perception, sound level, and overall speech quality. Rating is given on a scale from -3 (much

worse) to 3 (much better). The rating scale is named the CMOS (comparison mean opinion
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Table 5.5: Subjective assessment conducted on the artificially extended speech files belonging to the
test set.

Conditions CMOS CI95

Re-sampled AMR coded narrowband signal (SAMR−NB[n′]) vs Proposed approach 1.3944 [1.2300 1.5589]

Modulation technique vs Proposed approach 1.1833 [1.0182 1.3485]

Cepstral domain approach vs Proposed approach 1.2556 [1.0681 1.4430]

score) scale. Fifteen listeners have participated in the subjective assessment. These listeners

do not have any hearing problems. Their ages are between 25 to 32 years. CMOS score is

computed for the three conditions. The first condition is that artificially extended speech files

by the proposed approach are compared with their corresponding re-sampled AMR coded nar-

rowband signals. Rest conditions are: the artificially extended speech files by the proposed

approach are compared to the artificially extended speech files by the modulation technique

and cepstral domain approach. Twelve speech files are taken from the test set for listening. The

twelve pairs of speech files are compared and then rated for each condition. The speech files

are band pass filtered by the P.341 filter [2] and subsequently scaled to an active speech level

of -26 dBov [90]. CMOS and 95% confidence interval are listed in Table 5.5 for each condition.

The proposed approach improves the CMOS value by 1.3944, 1.1833, and 1.2556 points when

compared to the re-sampled AMR coded narrowband signal (SAMR−NB[n′]), extended speech

signals by the modulation technique and cepstral domain approach, respectively. In the sub-

jective listening test, listeners gave their opinions. According to opinions, perception of speech

sounds is obtained higher in the extended speech signals by the proposed approach than the

re-sampled AMR coded narrowband signal (SAMR−NB[n′]) and extended speech signals by the

modulation technique. Noise present in extended speech sounds is suppressed higher by the

proposed approach than the cepstral domain approach.

5.3 Objective comparison with the previous schemes

In this section, we compare the performances of different types of signal modeling schemes

proposed in the all chapters.
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Table 5.6: Performance evaluation of each modeling scheme for the speech files belonging to the
validation set.

Signal modeling schemes LSDUB (dB) LSDFB (dB) MOS-LQO

Wideband modeling 9.0480 7.8191 3.1904

High-band modeling 9.0159 7.7843 3.5540

Mapped high-band modeling 8.0167 7.4869 3.7962

5.3.1 An objective comparison in the oracle conditions

Our proposed approaches (in chapters 3, 4, and 5) are mainly different in respective to

signal modeling scheme or signal of interest. To do a fair comparison, all these approaches

are implemented here keeping the same experimental conditions except the signal modeling

schemes. Experimental conditions means the encoded narrowband signal at 12.2 kbps, Hanning

window, wideband signal, and reconstruction process (refer Chapters 3 and 5). The error system

T is defined for all the modeling schemes as follows

T =





FWB −K(↑ 2) A (AMR)(↓ 2)FHQ2−MSIN , for wideband modeling

FHB −K(↑ 2) A (AMR)(↓ 2)FHQ2−MSIN , for high-band modeling

FBPS −K(↑ 2) A (AMR)(↓ 2)FHQ2−MSIN , for mapped high-band modeling





(5.8)

where FWB, FHB, and FBPS are the signal models of wideband (50-7000 Hz) signal, bandpass

(4000-7000 Hz) signal, and bandpass (4000-7000 Hz) shifted signal. Further, high-band speech

signals are obtained using the oracle IIR synthesis filters (without using any machine learning

modeling technique, i.e., oracle condition) for each modeling scheme. One more thing is that

we are not applying any post-processing steps, viz. SFS technique and DFT concatenation to

know the effect of signal modeling schemes. Performance of each modeling scheme is presented

in Table 5.6 on the speech files belonging to the validation set. It is observed in Table 5.6

that high-band modeling yields more improvement in MOS-LQO than LSD (upper-band and

full-band LSD) when compared with wideband modeling, and the mapped high-band modeling

improves the MOS-LQO and LSD (upper-band and full-band LSD) when compared with high-
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Table 5.7: Performance comparison between wideband modeling and mapped high-band modeling
in practical scenario.

Signal modeling schemes LSDUB (dB) LSDFB (dB) MOS-LQO

Wideband modeling 17.6657 13.2050 3.3022

Mapped high-band modeling 15.8544 12.1325 3.3400

band modeling. The mapped high-band modeling scheme among all the modeling schemes

gives the best objective measures, as seen in Table 5.6.

5.3.2 An objective comparison in practical conditions

In this section, we discuss the performance of the proposed approaches in Chapters 3 and 5

in practical conditions (using machine learning modeling techniques). Our proposed approaches

are mainly different from each other with respect to signal modeling schemes. Chapter 3 uses

wideband modeling, and Chapter 5 uses mapped high-band modeling. The objective measures

are listed in Table 5.7 of chapters 3 and 5 on the test set. It can be observed in Table 5.7 that

the objective measures are obtained better by using the mapped high-band modeling than the

wideband modeling.

5.4 Conclusion

This work proposes to use the modulation process, H∞ optimization, and DNN modeling for

obtaining the synthesis filter. The modulation process is used to shift the high-frequencies into

the narrowband region for getting better results using the H∞ optimization. The H∞ optimiza-

tion helps in acquiring the synthesis filter corresponding to a signal model (pole-zero model)

and an analysis filter. The synthesis filter has the high-band spectral envelope information of a

signal in its narrowband region. The gain adjustment and spectral floor suppression techniques

are used for controlling the energy of synthesized high-frequency components. Separate DNN

models are designed for estimating the gain factor and synthesis filter. DNN modeling and

computation of the gain factor reduce the performance loss, which is obtained due to obtaining
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error in the predicted synthesis filter. The MOS-LQO objective measure is improved by the

proposed approach in comparison to the baselines. Also, in subjective listening test, CMOS

value is obtained higher by the proposed approach when compared to the baselines.
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Figure 5.9: Spectrogram of (a) reference wideband speech signal of a female speaker, (b) AMR
coded narrowband signal sampled at 16 kHz, and (c,d,e) extended speech signal by the proposed
approach, modulation technique, and cepstral domain approach, respectively .

99

TH-2564_156102023



5. Artificial bandwidth extension technique based on the mapped high-band modeling

100

TH-2564_156102023



6
Summary and future work

Contents
6.1 Summary of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

101

TH-2564_156102023



6. Summary and future work

6.1 Summary of the work

There are two main goals, which are addressed in this thesis. The first goal is to explore

the H∞ sampled-data control theory in the artificial bandwidth extension process used at the

receiver end in communication. As per the theoretical point of view, we can apply this theory

to a linear time-invariant system. However, a linear time-invariant system can not be obtained

for different speech sounds. Because all speech sounds do not have the same characteristics.

Therefore, the H∞ sampled-data control theory is alone not sufficient for the speech domain.

This theory is applicable only for the short duration of around 10-30 ms, in which we can obtain

an LTI system for representing the speech production model. We can design a synthesis filter for

the small speech segment using theH∞ sampled-data system theory. However, it is not sufficient

in the practical scenario. A variety of synthesis filters are designed for different speech segments.

It is infeasible to store all the synthesis filters. Therefore, we used machine learning modeling

techniques, which store information of synthesis filters in a compact form. The second goal is

to use of different types of signal models. The signal model has spectral envelope information

of a signal. The spectral envelope of a speech signal consists of poles as well as zeros. In state

of art, only poles in the signal model are taken into account. We consider poles as well as zeros

in the signal model for better signal modeling. We have experimented with using three types of

speech signal models. These signal models depend upon signals spectrum of interest, which are

used in designing the synthesis filter. The signal model has spectral envelope information of the

signal of interest. In this thesis, we have experimented with considering wideband signal, high-

band signal, and mapped high-band signal as the signals spectrum of interest. The mapped

high-band signal modeling out of these signal modeling performs best overall. In addition, we

enhanced three types of narrowband signals. One is the aliased narrowband signal, the second

is the pure narrowband signal, and the third is the encoded narrowband signal (compressed

narrowband signal). The major contributions incorporated in this thesis are summarized below:

• Initially, an ABE approach is proposed for the aliased narrowband signal. The aliased

narrowband signal has distorted low-frequency components. However, it establishes the
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better conditional dependency between narrowband and wideband information, which

helps in the estimation of the synthesis/interpolation filter. Therefore, GMM and DNN

models perform almost the same. In this approach, we estimate the full wideband signal

as there is an aliasing distortion in low-frequency components. Therefore, the signal of

interest is the wideband signal. As a result, wideband signal modeling is used in the

proposed ABE approach. The interpolation filter is obtained using the H∞ optimization.

The obtained interpolation filter is used in the bandwidth extension process of the aliased

narrowband signal. This approach is easy to implement but can not be used for the

existing transmitter set-ups. However, this approach showed the potential ofH∞ sampled-

data system theory in ABE when we focus just on high-frequency signals like unvoiced

speech signals.

• We next concentrate upon the standard transmitter set-ups. A new ABE approach is

proposed using H∞ sampled-data system theory, which is compatible with the existing

transmitter set-ups. We followed the ITU-T standards as done by peers. It means the

band-limited (300-3400 approximately) narrowband signal encoded at 12.2 kbps is en-

hanced by the proposed ABE approach. The proposed ABE approach also considers

wideband signal modeling. The synthesis filter corresponding to the wideband signal

model is obtained using H∞ optimization. This synthesis filter has wideband spectral

envelope information. However, the narrowband spectral envelope information in the

synthesis filter is not needed, because the narrowband signal is available at the receiver

end (due to using the standard Tx set-up). Therefore, the narrowband spectral envelope

information is suppressed in the synthesis filter. Further, the gain adjustment and spectral

floor suppression techniques are used to control the energy of synthesized high-frequency

components. The DNN model is used to estimate the synthesis filter for enhancing an

unknown and uncertain speech signal. The DNN model performs better than the GMM

model.

• Further, the post-processing applied to the synthesis filter is avoided, as done in the pre-
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vious approach. Post-processing is included in the optimization problem. For this, we

change the signal model. We used the high-band signal modeling in the proposed ap-

proach. Also, the proposed ABE approach enhances the narrowband signal consisting of

frequency components up to 4 kHz approximately. The proposed approach uses H∞ op-

timization for designing the synthesis filter corresponding to the high-band signal model.

The obtained synthesis filter has high-band spectral envelope information. Besides, the

gain adjustment technique is used to set the energy level of the estimated high-band sig-

nal, and the DFT concatenation is used to avoid the unwanted information leaked by the

non-ideal filters (synthesis filter and low pass filter) in the wideband signal estimation.

The DNN model is used for predicting the synthesis filter and gain factor.

• Further, we again changed the signal modeling, which leads to better results. We used

the mapped high-band signal modeling to get a better solution by the H∞ sampled-data

system theory. The mapped high-band signal has the high-band information mapped

to the narrowband region using modulation. Additionally, we modified the set-ups as

per the ITU-T protocols for a better comparison with peers. Apart from that, we use

the gain adjustment and spectral floor suppression techniques for controlling the energy

of the estimated high-band signal. Separate DNN models are used for estimating the

synthesis filter and gain factor. Also, the computation process of the gain factor reduces

the performance loss due to obtaining errors in the estimated synthesis filter.

6.2 Future directions

In this thesis, we proposed to use of the H∞ sampled-data system theory for artificial

bandwidth extension. Our work shows the potential of the H∞ sampled-data system theory in

speech processing with a lot of possibilities for further research. Therefore, we list some of the

possible future directions as follows:

• We obtained the approximated FIR filter of the IIR synthesis filter by truncating the

higher-order Taylor series in all the proposed ABE approaches. However, this approach

104

TH-2564_156102023



6.2 Future directions

does not provide an optimal selection of coefficients. Therefore, as a future direction,

optimal FIR representation of the synthesis IIR filter can be used for all the proposed

ABE approaches.

• Signal models are obtained using Prony’s method in the proposed ABE approaches. Other

signal modeling schemes (such as recursive methods [95, 96], recursive weighted linear

least-squares (WLLS) procedure [97], Newton-like algorithm [98], and quasi-Newton al-

gorithm [40]) can be used to see the effect of different signal modeling schemes on the

performances.

• A deep study could be done for different phonemes. We can experiment to decide the

optimal signal model for each phoneme. It means the optimal number of poles and zeros

in the signal model could be decided for each phoneme empirically. It may result that

length of the FIR synthesis filter can be different for different phonemes. It needs to

design a separate statistical model for each phoneme.

• The band-limited narrowband signal encoded at 12.2 kbps has frequency components

between 300-3400 Hz approximately. Low-frequency components in the range of 0-300 Hz

can be recovered to improve speech quality. In addition, losses obtained due to encoding

of the narrowband signal can be reduced.

• We assumed the ideal AMR block in our work. It may produce error in obtaining the

synthesis filter. Results might be better if the exact model of AMR is used.

• An analysis of the performance of the proposed bandwidth approach can be done by using

different narrowband signals encoded at different bit rates, such as 4.75 kbps, 5.15 kbps,

5.90 kbps, 6.70 kbps, 7.40 kbps, 7.95 kbps, and 10.20 kbps.

• We could extend the work for the noisy signals.

• The H∞ sampled-data system theory could be used in other speech applications, such as

speaker identification, speaker verification, and speech classification etc.
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• The H∞ sampled-data system theory could be explored for other signals, such as image,

audio, ECG, etc.
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A. Sampled-data system theory

In this appendix, we provide a brief introduction to the sampled-data system theory.

A.1 History of sampled-data system theory

It is a well-established result that digital signal transmission has numerous benefits over

analog transmission. Therefore, the analog/continuous signal is discretized using the sampling

process. The resulting discrete signal is transmitted but reconstructed back to the continuous

domain at the receiver. Here the main aim is to recover an analog signal from its samples with

minimal error. This is called a (continuous/analog) signal reconstruction problem. The signal

reconstruction problem is the fundamental problem in digital signal processing. The sampling

theorem ( [99]) states that we can recover the original continuous signal from the sampled-data

if it is band-limited. In practice, signals are not band-limited. Hence, a popular solution to

achieve band-limited signal by using an anti-aliasing filter introduces another distortion due to

the Gibbs phenomenon. Furthermore, the impulse response of the ideal anti-aliasing filter is

difficult to implement as it is non-causal and does not decay very fast.

To find an optimal answer to the signal reconstruction problem in general, researchers

started looking at these problems as mathematical optimization problems (see Sun et al. [100],

and Unser [101]). Mathematically, this means the design of an analog to discrete converter

(sampler) and a discrete to analog convertor (hold) given the error criterion. The major chal-

lenge is in treating discrete and analog signals (or multi-rate) in a common framework. The

Sampled data system theory provided such a framework. In 1995, Chen and Francis [48] applied

the sampled-data system theory to the signal reconstruction problem entirely in the discrete

domain (this problem is at the heart of this thesis). The continuous signal reconstruction

problem was studied first in 1996 by Khargonekar and Yamamoto [102]. Instead of aiming at

exact reconstruction as in the Shannon case, minimizing the error without throwing away any

frequencies is the main criterion in the signal reconstruction using sampled-data system theory.

The optimization is done using the H2-norm or H∞ criterion. The sampled data system theory

is applied to several signal processing applications using different error criteria with or without

causality constraints after the Khargonekar and Yamamoto paper [102] in 1996. For exam-
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ple, downsampling with causality constraints (using fast sampler/fast hold approximation) is

treated in [103–105], audio compression in [43], image application in [106] etc. For a complete

list of applications, see the review paper by Yamamoto et al. [107]. Meinsma and Mirkin [108]

applied the sampled-data system theory to the cases where a non-causal sampler (or hold) is

fixed, and we have to design hold (or sampler). They have also designed relaxed causal (i.e.,

with limited access to future) hold given a sampler using sampled data system theory [109,110].

Shekhawat and Meinsma applied sampled data system in non-causal downsampling and in the

design of relaxed causal sampler design given a hold [46,111].

In this thesis, we have used the result from Chen-Francis [48], and Yamomoto [107] (which

are described next).

A.2 Abbreviations

Z: The set of integers.

LDTI: Linear discrete time invariant.

R: The set of real numbers.

Rn: n-dimensional vector space over R.

l2(Z,R): Square summable sequences in Rn.

||.||2: l2-norm of a discrete sequence.

↑ N : Upsampler with an upsampling factor N , i.e., inserting the N-1 zero-valued samples

between two consecutive original samples for increasing the sampling rate.

↓ N : Downsampler with a downsampling factor N , i.e., keeping every N th sample and deleting

the remaining samples.

A.3 A general closed-loop system

The standard closed-loop system T is made up of a generalized plant G and a feedback

controller Kd, as shown in Figure A.1. The transfer function of system T from ω to ζ is written
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ψ
Kd

v

G
ωζ

Figure A.1: Single rate discrete-time lifted system [1]

as follows [1]

T = G11 +G12Kd(I −G22Kd)
−1G21, (A.1)

where G is

G =



G11 G12

G21 G22


 . (A.2)

A.4 Lifting and inverse lifting

The lifting technique converts the one-dimensional signal into a multi-dimensional signal

and vice versa by inverse lifting [50]. This can be applied for continuous signals and discrete

signals. We need only discrete-time lifting and inverse lifting. Discrete-time lifting operator by

a factor of N is defined by LN in the time domain, and it is defined as [1]

LN : l2(Z,R)→ l2(Z,RN), (A.3)

{
v[0], v[1], ., v[N − 1], v[N ], v[N + 1], ., v[2N − 1]..

}
→








v[0]

v[1]

.

.

v[N − 1]







v[N ]

v[N + 1]

.

.

v[2N − 1]




...





(A.4)
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A.4 Lifting and inverse lifting

Discrete-time inverse lifting operator by a factor of N is defined by L−1N in the time domain

and it is defined as [1]

L−1N : l2(Z,RN)→ l2(Z,R), (A.5)








v0[0]

v1[0]

v2[0]

.

.

.

vN−1[0]







v0[1]

v1[1]

v2[1]

.

.

.

vN−1[1]




...





→ v0[0], v1[0]...vN−1[0], v0[1], v1[1]...vN−1[1]... (A.6)

The z-transform representations of lifting and inverse lifting are [47,112],

LN = (↓ N)

[
1 z z2 ..... zN−1

]T
(A.7a)

L−1N =

[
1 z−1 z−2 ..... z−(N−1)

]
(↑ N). (A.7b)

LN and L−1N are denoting the z-transform of lifting and inverse lifting by a factor N , respec-

tively. Lifting technique is time varying and non-causal in nature, and inverse lifting is causal

and time varying in nature.

Proposition 1. Let transfer function F(z) be represented in state space as

F(z) :=

[
A B
C D

]
= D + C(zI − A)−1B,

with A ∈ RN×N , B ∈ RN×p, C ∈ Rm×N , D ∈ Rm×p matrices, m and p being the dimensions of
output and input of F(z), respectively. Next, the lifted (by a factor of N) transfer function of
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F(z) in state space form is represented as

F(z) := LNF(z)L−1N =




AN AN−1B AN−2B . . . B
C
CA
.
.
.

CAN−1

D 0 0 0 0 0
CB D 0 0 0 0
. . . . . .
. . . . . .
. . . . . .

CAN−2B CAN−3B . . . D




, (A.8)

where L2 and L−12 can be obtained by using (A.7a) and (A.7b), respectively.

Proof. See [1, Theorem 8.2.1].
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B. A general solution of sampled-data system problem in ABE

A general sampled-data error system in ABE is shown in Figure B.1. The error system G can

G3 ↑ 2 Kd

w

G1
SI

S̃IG2

e

↓ 2
−
+

Figure B.1: A general sampled-data error system in ABE.

be written in z domain

G(z) = G1(z)−Kd(z)(↑ 2)G3(z)(↓ 2)G2(z), (B.1)

The error system G in Figure B.1 is a multi rate system because of the presence of the upsampler

and downsampler. Hence, this system needs to be converted into a single rate system for

obtaining the solution using the MATLAB robust control toolbox [113,114]. System G can be

transformed into a single rate system G by using the lifting operation [1, 48], defined in (A.7).

(A.8) is used to get the following results in [47]

Kd(z)(↑ 2) = L−12 L2Kd(z)L−12 L2(↑ 2),

= L−12 Kd(z)

[
1 0

]T

1×2
,

= L−12 K̃d(z), (B.2)

Kd(z) =

[
1 z−1

]
K̃d(z

2), (B.3)

where

K̃d(z) := Kd(z)

[
1 0

]T

1×2
, (B.4)

Kd(z) := L2Kd(z)L−12 . (B.5)

Equality defined in (B.2) is substituted in (B.1) as

G(z) = G1(z)− L−12 K̃d(z)G3(z)(↓ 2)G2(z). (B.6)
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In (B.6), all the transfer functions do not have the same sampled rate, such as transfer functions

K̃d(z) and G3(z) sampled at 8 kHz and transfer functions G1(z) and G2(z) sampled at 16 kHz,

i.e., the system G is a multi rate system. It can be transformed into a single rate system using

lifting and inverse lifting operations, as defined in (A.7) [1, 48]. For this, the lifting is applied

to the input and output of system G. This leads to a lifted transfer function of the system G,

which is defined as

G(z) = L2G(z)L−12 ,

= L2G1(z)L−12 − L2L
−1
2 K̃d(z)G3(z)(↓ 2)G2(z)L−12 ,

= L2G1(z)L−12 − L2L
−1
2 K̃d(z)G3(z)(↓ 2)L−12 L2G2(z)L−12 ,

= G1(z)− K̃d(z)G3(z)SG2(z), (B.7)

where L2L
−1
2 = L−12 L2 = 1, G1(z) := L2G1(z)L−12 , S =

[
1 0

]
, and G2(z) := L2G2(z)L−12 .

The lifted transfer function G(z) is a single-rate system at 8 kHz. The H∞-norm of the

system G(z) is equal to the H∞-norm of the system G(z) as the lifting does not change the

H∞-norm [1]. The H∞-norm of the system G is minimized using the optimal filter K̃d(z).

Equation (B.7) can be written in the form of a standard feedback control system (closed-loop

system) by using (A.1), as depicted in Figure B.2 [1]. Here, 0 is a zero matrix of 1× 2, I is an

[
G1(z) −I

G3(z)SG2(z) 0

]

K̃d(z)

xd

ẽ

NBres

w̃

Figure B.2: General standard feedback control system.

identity matrix of 2× 2, w̃ = L2w, and ẽ = L2e. Further, the optimal filter K̃d(z) is obtained

with the help of robust control toolbox in MATLAB [114]. To this end, the optimal filter Kd(z)

is obtained from K̃(z) by using (B.3).
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C. Objective measures

Several standard objective speech quality measures such as mean square error (MSE) [75], signal

to distortion ratio (SDR) [76], log likelihood ratio (LLR) [3, 77], logarithmic spectral distance

LSD [39, 78], narrowband MOS-LQO (mean opinion score listening quality objective) [79, 80],

and wideband MOS-LQO [81, 82] are computed for performance analysis. The mathematical

formulation is written.

MSE =

∑L
i=1(s(i)− s̃(i))2

L
(C.1)

L is signal length, s is the original wideband signal, and s̃ is the reconstructed wideband signal.

SDR(dB) = 10 log10

∑L
i=1(s(i)

2

∑L
i=1(s(i)− s̃(i))2

(C.2)

Parameters in (C.2) are the same as defined in (C.1).

LLR =

∑M
i=1 log10

(−→aiTp Ric−→aip
−→aiTc Ric−→aic

)

M
. (C.3)

M is the number of frames, −→ai c and −→ai p are the LPC vector of the original ith speech frame

and reconstructed ith speech frame, respectively, and Ric is the autocorrelation matrix of the

original ith speech frame.

LSD =

∑M
i=1

√
(∑nhigh

j=nlow
(20 log10 |X(i,j)|−20 log10 |X̃(i,j)|)2

N

)

M
(C.4)

with |X(i, j)| and X̃(i, j) being the absolute values of the FFT of ith frame and jth frequency

bin of original and reconstructed speech frame, respectively. nlow and nhigh are the frequency

bins corresponding to the frequency range from 0 or 4 to 7 or 8 kHz. M and N are denoting

the number of frames and the number of frequency bins, respectively.

MOS-LQO = a+
b

(1 + exp(c ∗ p+ d))
(C.5)

with a = 0.999, b = 4.999 − a, c = −1.4945 for narrowband MOS-LQO and = −1.3669 for

wideband MOS-LQO, d = 4.6607 for narrowband MOS-LQO and = 3.8224 for wideband MOS-

LQO, and p is PESQ. PESQ measure is used reliably to predict the speech quality in a wider
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range of network conditions, including analog connections, codecs, packet loss, and variable

delay. PESQ measuring process consists of the level alignment of the original signal and re-

constructed signal to a standard listening level, filtering process, time alignment for correcting

time delays, auditory transform process to obtain the loudness spectra, calculating the differ-

ence between the loudness spectra, and averaging over time and frequency [3].

LLR, SDR, and narrowband PESQ measures are computed with the help of a composite tool

downloaded from the website of the author, and the narrowband MOS-LQO measure is com-

puted from the narrowband PESQ [79,80]. The wideband MOS-LQO measure is computed by

the MATLAB function PESQ2 MTLB downloaded from the mathworks website [82].
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[28] C. YağLı, M. T. Turan, and E. Erzin, “Artificial bandwidth extension of spectral envelope along
a viterbi path,” Speech Communication, vol. 55, no. 1, pp. 111–118, 2013.

122

TH-2564_156102023



BIBLIOGRAPHY

[29] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, B. Kingsbury et al., “Deep neural networks for acoustic modeling in speech recogni-
tion,” IEEE Signal processing magazine, vol. 29, 2012.

[30] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on speech enhancement based
on deep neural networks,” IEEE Signal Processing Letters, vol. 21, no. 1, pp. 65–68, 2014.

[31] Y. Wang, S. Zhao, W. Liu, M. Li, and J. Kuang, “Speech bandwidth expansion based on
deep neural networks,” in Proceedings Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[32] J. Abel and T. Fingscheidt, “A dnn regression approach to speech enhancement by artificial
bandwidth extension,” in IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), 2017, pp. 219–223.

[33] K.-T. Kim, M.-K. Lee, and H.-G. Kang, “Speech bandwidth extension using temporal envelope
modeling,” IEEE Signal Processing Letters, vol. 15, pp. 429–432, 2008.

[34] Y. Sunil and R. Sinha, “Sparse representation based approach to artificial bandwidth extension of
speech,” in 2014 International Conference on Signal Processing and Communications (SPCOM),
2014, pp. 1–5.

[35] H. Tolba and D. O’Shaughnessy, “On the application of the AM-FM model for the recovery
of missing frequency bands of telephone speech,” in Fifth International Conference on Spoken
Language Processing, Sydney, Australia, 1998.

[36] K. Li and C.-H. Lee, “A deep neural network approach to speech bandwidth expansion,” in Pro-
ceedings IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2015, pp. 4395–4399.

[37] L. Bin, T. Jianhua, W. Zhengqi, L. Ya, D. Bukhari et al., “A novel method of artificial bandwidth
extension using deep architecture,” 2015.

[38] J. Sadasivan, S. Mukherjee, and C. S. Seelamantula, “Joint dictionary training for bandwidth
extension of speech signals,” in Proceedings IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2016, pp. 5925–5929.

[39] J. Abel, M. Strake, and T. Fingscheidt, “A simple cepstral domain DNN approach to artifi-
cial speech bandwidth extension,” in Proceedings IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 5469–5473.

[40] D. Marelli and P. Balazs, “On pole-zero model estimation methods minimizing a logarithmic
criterion for speech analysis,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 2, pp. 237–248, 2010.

[41] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard
H2 and H∞ control problems,” IEEE Transactions on Automatic control, vol. 34, no. 8, pp.
831–847, 1989.

[42] Y. Yamamoto, “A function space approach to sampled data control systems and tracking prob-
lems,” IEEE Transactions on Automatic Control, vol. 39, no. 4, pp. 703–713, 1994.

[43] S. Ashida, M. Nagahara, and Y. Yamamoto, “Audio signal compression via sampled-data control
theory,” in SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), vol. 2, 2003, pp. 1744–
1747.

123

TH-2564_156102023



BIBLIOGRAPHY

[44] Z. Du, Z. Yan, and Z. Zhao, “Interval type-2 fuzzy tracking control for nonlinear systems via
sampled-data controller,” Fuzzy Sets and Systems, vol. 356, pp. 92–112, 2019.

[45] Z. Du, Y. Kao, and J. H. Park, “New results for sampled-data control of interval type-2 fuzzy
nonlinear systems,” Journal of the Franklin Institute, vol. 357, no. 1, pp. 121–141, 2020.

[46] H. S. Shekhawat and G. Meinsma, “A sampled-data approach to optimal non-causal downsam-
pling,” Mathematics of Control, Signals, and Systems, vol. 27, no. 3, pp. 277–315, 2015.

[47] Y. Yamamoto, M. Nagahara, and P. P. Khargonekar, “Signal Reconstruction via H∞ Sampled-
Data Control Theory Beyond the Shannon Paradigm,” IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 613–625, 2012.

[48] T. Chen and B. A. Francis, “Design of multirate filter banks by H∞ optimization,” IEEE
Transactions on Signal Processing, vol. 43, no. 12, pp. 2822–2830, 1995.

[49] Y. Yamamoto, H. Fujioka, and P. P. Khargonekar, “Signal reconstruction via sampled-data
control with multirate filter banks,” in Proceedings 36th IEEE Conference on Decision and
Control, vol. 4, 1997, pp. 3395–3400.

[50] Y. Yamamoto, M. Nagahara, and H. Fujioka, “Multirate Signal Reconstruction and Filter Design
Via Sampled-Data Control,” MTNS, 2000.

[51] Z. Du, Y. Kao, H. R. Karimi, and X. Zhao, “Interval Type-2 Fuzzy Sampled-Data H∞ Control
for Nonlinear Unreliable Networked Control Systems,” IEEE Transactions on Fuzzy Systems,
vol. 28, no. 7, pp. 1434–1448, 2019.

[52] U. Shaked and Y. Theodor, “H∞ optimal estimation: a tutorial,” in Proceedings 31st IEEE
Conference on Decision and Control, 1992, pp. 2278–2286.

[53] J. Abel, M. Strake, and T. Fingscheidt, “Artificial bandwidth extension using deep neural net-
works for spectral envelope estimation,” in IEEE International Workshop on Acoustic Signal
Enhancement (IWAENC), 2016, pp. 1–5.

[54] W. Nogueira, J. Abel, and T. Fingscheidt, “Artificial speech bandwidth extension improves tele-
phone speech intelligibility and quality in cochlear implant users,” The Journal of the Acoustical
Society of America, vol. 145, no. 3, pp. 1640–1649, 2019.

[55] A. H. Nour-Eldin and P. Kabal, “Mel-frequency cepstral coefficient-based bandwidth extension
of narrowband speech,” in Proceedings Ninth Annual Conference of the International Speech
Communication Association, 2008.

[56] “EVS Permanent Document EVS-7c: Processing Functions for Characterization Phase (3GPP
S4 141126, V. 1.0.0),” Aug. 2014.

[57] D. Gupta and H. S. Shekhawat, “Artificial bandwidth extension using H∞ optimization,” Proc.
Interspeech 2019, pp. 3421–3425, 2019.

[58] D. Gupta, H. S. Shekhawat, and R. Sinha, “A new framework for artificial bandwidth extension
using H∞ filtering,” Circuits, Systems, and Signal Processing, pp. 1–25, 2022, https://rdcu.be/
cFTQQ.

[59] G. Meinsma and L. Mirkin, “Sampling from a system-theoretic viewpoint: Part Iconcepts and
tools,” IEEE Transactions on Signal Processing, vol. 58, no. 7, pp. 3578–3590, 2010.

124

TH-2564_156102023

https://rdcu.be/cFTQQ
https://rdcu.be/cFTQQ


BIBLIOGRAPHY

[60] D. Gupta and H. Shekhawat, “Artificial Bandwidth Extension Using H∞ Optimization and
Speech Production Model,” in 29th IEEE International Conference Radioelektronika (RA-
DIOELEKTRONIKA), 2019, pp. 1–6.

[61] D. Gupta and H. S. Shekhawat, “High-band feature extraction for artificial bandwidth extension
using deep neural network and H∞ optimisation,” IET Signal Processing, vol. 14, no. 10, pp.
783–790, 2021.

[62] J. D. Markel and A. G. Jr., Linear Prediction of Speech, 1st ed., ser. Communication and
Cybernetics 12. Springer-Verlag Berlin Heidelberg, 1976.

[63] MathWorks, “http://www.mathworks.com/.”

[64] K. Aida-Zade, C. Ardil, and S. Rustamov, “Investigation of combined use of MFCC and LPC
features in speech recognition systems,” World Academy of Science, Engineering and Technology,
vol. 19, pp. 74–80, 2006.

[65] F. Itakula, “Line Spectrum Representation of Linear Predictive Coefficients of Speech Signal,”
Journal of Acoustic Society of America, 1975.

[66] Y. Sunil and R. Sinha, “Exploration of class specific ABWE for robust children’s ASR un-
der mismatched condition,” in Proceedings International Conference on Signal Processing and
Communications (SPCOM), 2012, pp. 1–5.

[67] M. B. Christopher, Pattern recognition and machine learning. Springer-Verlag New York, 2016.

[68] A. Kain and M. W. Macon, “Spectral voice conversion for text-to-speech synthesis,” in Proceed-
ings IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, 1998,
pp. 285–288.

[69] H. V. Poor, An introduction to signal detection and estimation. Springer Science & Business
Media, 2013.

[70] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning. MIT Press, 2016.

[71] W. Verhelst, “Overlap-add methods for time-scaling of speech,” Speech Communication, vol. 30,
no. 4, pp. 207–221, 2000.

[72] R. Crochiere, “A weighted overlap-add method of short-time Fourier analysis/synthesis,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 1, pp. 99–102, 1980.

[73] J. S. Garofolo, “Timit acoustic phonetic continuous speech corpus,” Linguistic Data Consortium,
1993.

[74] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent speaker verification: Classifiers,
databases and RSR2015,” Speech Communication, vol. 60, pp. 56–77, 2014.

[75] P. Nizampatnam and K. K. Tappeta, “Bandwidth extension of narrowband speech using integer
wavelet transform,” IET Signal Processing, vol. 11, no. 4, pp. 437–445, 2016.

[76] A. Hurmalainen, J. F. Gemmeke, and T. Virtanen, “Detection, separation and recognition of
speech from continuous signals using spectral factorisation,” in Proceedings 20th IEEE European
Signal Processing Conference (EUSIPCO), 2012, pp. 2649–2653.

125

TH-2564_156102023



BIBLIOGRAPHY

[77] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation of
speech quality (PESQ)-a new method for speech quality assessment of telephone networks and
codecs,” in Proceedings IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), vol. 2, 2001, pp. 749–752.
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