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“Questions about the metric relations of Space in the
immeasurably small are thus not idle ones.”

-Bernhard Riemann
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ABSTRACT

Let Sg denote a closed, orientable surface of genus g ≥ 2. Let C(Sg) be the
associated curve graph and d be the associated path metric. Let α and β be curves
on Sg and Tβ(α) be the Dehn twist of α about β.

If d(α, β) = 3, we show that d(α, Tβ(α)) = 4. This produces many tractable
examples of distance 4 vertices in C(Sg). As an application we show that the
minimum intersection number of any two curves at a distance 4 on Sg is at most
(2g − 1)2.

Let d(α, β) = 4. We fix the vertex α and apply Tβ to it in an attempt to create
pairs of curves at a distance 5 apart. We give a necessary and sufficient topological
condition for d(α, Tβ(α)) to be 4. We then characterise the pairs of α and β for
which 5 ≤ d(α, Tβ(α)) ≤ 6. Lastly, we give an example of a pair of curves on S2

which represent vertices at a distance 5 in C(S2) with intersection number 144. This
example gives that imin(2, 5) ≤ 144.

Our proofs majorly rely on cut and paste techniques.
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TH-3275_176123007



TH-3275_176123007



ACKNOWLEDGEMENT

First and foremost, I convey my immense gratitude to my thesis advisor Dr.
Sreekrishna Palaparthi. He has not only aided me in learning mathematics but has
also taught me the importance of its philosophy. I am grateful to him for generosity
with his time and his invaluable insights, suggestions and encouragement in my
mathematical endeavours.

I convey my heartfelt gratitude to Dr. K.V. Srikanth whose course in Differ-
ential Topology, 2017 has been the turning point in my mathematical career. It is
from his lectures that I learnt the beauty of geometric thinking and the importance
of pursuing the history behind mathematical concepts.

I convey my gratitude to Prof. William W. Menasco and Prof. Joan S. Birman
for their helpful suggestions and helping me see newer potential of my work.

I convey my gratitude to the members of my doctoral committee Prof. Anupam
Saikia, Prof. Rupam Barman and Dr. Vinay Wagh for encouraging and periodically
reviewing my research work.

I thank Prof. Kalpesh Kapoor who has been a constant mentor throughout
my studentship at IIT Guwahati. I learnt from him the value of kindness and
selflessness in one’s professional life.

The work I have done in these years would not have been possible without the
love and presence of my family and friends. I am forever indebted to them for their
unwavering support during the murky times of the Covid pandemic.

Finally, I acknowledge support from the Department of Mathematics, Indian
Institute of Technology Guwahati.

ix

TH-3275_176123007



TH-3275_176123007



CONTENTS

Abstract vii

Acknowledgement ix

Chapter 1. Introduction 1
1.1. Overview of the thesis 3
1.2. Prospects 6

Chapter 2. Preliminaries 9
2.1. Surfaces 9
2.2. Curves 9
2.3. Mapping Class Group 10
2.4. Dehn Twists 11
2.5. Curve graph 12
2.6. Minimal intersection number 13
2.7. Subsurface projection 14
2.8. Efficient geodesics in C(Sg) 15

Chapter 3. Setup 17
3.1. Amenable to Dehn twist in special position 17
3.2. Discs of transformation 18
3.3. Filling pairs of curves using Dehn twists 20

Chapter 4. Distance 4 Curves on C(Sg) 27
4.1. Terminology 27
4.2. Distance 4 curves 29

Chapter 5. Scaling Curves 37

xi

TH-3275_176123007



xii CONTENTS

5.1. Filling system of arcs 37
5.2. Buckets 38
5.3. Scaling curves 39
5.4. Properties of buckets 41
5.5. Almost filling arcs 44

Chapter 6. Criteria for d(a0, ta4(a0)) ≥ 5 47
6.1. Representative of c 48
6.2. Values of d(c, a0) 49
6.3. Conclusion 56

Chapter 7. A Pair of Distance 5 Curves on C(S2) 57

Bibliography 58

TH-3275_176123007



CHAPTER 1

INTRODUCTION

A surface, S, is a real two-dimensional oriented differential manifold. It’s natu-
ral to wonder how many distinct complex structures can S be equipped with. This
problem is popularly known as the Riemann’s moduli problem and the correspond-
ing space of these structures is known as the moduli space of S. We briefly look into
the moduli space of S when S is a closed surface. For the case when S has genus
zero, its moduli space consists of a single point which is the Riemann sphere. When
the genus of S is one, it has been proven that its moduli space can be identified
by the complex plane. Consider S = Sg has genus, g, greater than one. Riemann
claimed that the moduli space of Sg is determined by 3g − 3 complex parameters.
After Riemann, the structure of the moduli space of Sg became an active field of
interest over the next few decades.

Teichmüller gave a new approach to the moduli problem by defining a cover of
the moduli space and studying its structure intrinsically. This space, known as the
Teichmüller space corresponding to Sg, is denoted by Teich(Sg) and is defined as
follows : By a hyperbolic structure on Sg we will mean a diffeomorphism f : Sg −→
T , where T is a surface with a complete, finite-area hyperbolic metric and denote it
by (T, f). We refer to (T, f) as a marked hyperbolic surface. We say that (T1, f1)

and (T2, f2) are equivalent if there is an isometry I : T1 −→ T2 such that I ◦ f1
and f2 are homotopic. The space of distinct marked hyperbolic surfaces of Sg is
Teich(Sg). The group of isotopy classes of orientation preserving homeomorphisms
of Sg is known as the mapping class group of Sg and is denoted by Mod(Sg). A
classical fact is that the moduli space of S comes out to be Teich(Sg)/Mod(Sg).
An elaborate account of the historical development of the moduli space of surfaces
and the corresponding Techmüller spaces can be found in [1].

1
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2 1. INTRODUCTION

In [11], William J. Harvey associated a finite dimensional simplical complex
corresponding to a surface, called the complex of curves, as a tool to study the
corresponding Teichmüller space. By a curve on Sg we will mean an essential
simple closed curve on it. Harvey considered the vertices of the complex of curves
to be the isotopy classes of curves on Sg and any collection of k+1 mutually disjoint
curves comprised to form a k-simplex. In [13], Ivanov used the complex of curves
to give a geometric proof to the famous theorem by Royden in [23] which states
that the isometry group of the Teich(Sg) is the corresponding extended mapping
class group. The complex of curves becomes a natural geometric object on which
Mod(Sg) acts and thus becomes an intriguing space to study. Although the higher
dimensional simplices find a number of applications (see, [14]), the combinatorial
properties of the complex of curves is completely determined by its 1-skeleton. This
1-dimensional simplical complex is called the curve graph and is denoted by C(Sg).
The curve graph is a connected graph (see, [9]) and thus, it can be equipped with
a path-metric d. More precisely, the distance d between any two vertices of C(Sg)
is the minimal number of edges in any edge path between them.

Masur and Minsky in their seminal work in [18] discovered that C(Sg) with
the metric d is an infinite diameter δ-hyperbolic space. Later it was shown that
the δ can be chosen to be independent of the surface Sg, see [2], [7], [8], [12], [22].
The coarse geometry of the curve complex plays a pivotal role in understanding
the hyperbolic structure of 3-manifolds, the mapping class group of surfaces and
Teichmuller theory. One can see [21] for many such applications.

In comparison the local geometry of C(Sg) remains relatively unexplored. For
instance there is no characterisation of a 3-sphere around a vertex in C(Sg). A fun-
damental hindrance while studying C(Sg) is that there are infinitely many distinct
vertices adjacent to any vertex in C(Sg). In [19], the authors circumvented this local
infinitude of C(Sg) by defining a set of geodesics called the tight geodesics in C(Sg).
They prove that between any two vertices of C(Sg) there are only finitely many tight
geodesics. Similar notions have been used in [24], [25], [26] and [5] to overcome this
local pathology of C(Sg) and to compute distances between any two vertices. In [4],
the authors show the existence of infinite geodesic rays in C(Sg). The intersection
number between the vertices of these geodesic rays is bounded above by a polyno-
mial of the complexity of the surface and hence, is asymptotically low. Knowing
the local geometry of the curve graph promises aid in determining exact distances
between its vertices more efficiently than the existing methods. Further, this infor-
mation can also be employed in calculating the translation length of pseudo-Anosov
mapping classes and studying the action of Mod(Sg) on C(Sg) more precisely.

Ivanov proved in [13] that the group of automorphisms of the complex of curves
is Mod(Sg). Since Mod(Sg) is generated by Dehn twists about a finite collection
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1.1. OVERVIEW OF THE THESIS 3

of curves on Sg, we attempt a study of C(Sg) at a granular scale by looking at the
impact of powers of Dehn twists on vertices of C(Sg) which are at shorter distances
apart. Let α and γ be two curves on Sg and p ∈ N.

Remark 1. If d(α, γ) = 1, then d(α, T pγ (α)) = d(α, γ)− 1.

Remark 2. If d(α, γ) = 2, then d(α, T pγ (α)) = d(α, γ).

Remark 1 follows from the fact that if d(α, γ) = 1, then T pγ (α) = α. Remark
2 can be arrived at as follows : if d(α, γ) = 2, then there exists a curve c on Sg

such that d(α, c) = 1 and d(c, γ) = 1. Since i(α, T pγ (α)) = p(i(α, γ))2 therefore,
i(α, T pγ (α)) 6= 0. Hence, d(α, T pγ (α)) ≥ 2. Since α and γ are essential, simple closed
curves in Sg \ c we have, T pγ (α) is also an essential, simple closed curve in Sg \ c. It
follows that α, c, T pγ (α) forms a geodesic in C(Sg).

In general, one can ask the following question:

Question 1. If d(α, γ) > 2, then what is the relation between d(α, γ) and
d(γ, T pγ (α))?

We note that if d(α, γ) = n then d(T pγ (α), γ) = n. This follows from taking the
image of the geodesic in C(Sg) between α and γ under the action of the isometry
T pγ .

1.1. Overview of the thesis

In chapter 2 we define and state some properties of the mapping class group,
curve graph, minimal intersection number and efficient geodesics.

Let α and γ be curves on Sg. In chapter 3, we state and prove the following
theorem 5.

Theorem 5. Let α and γ be a filling pair of curves on Sg. Then α and T pγ (α)

also fills Sg.

In chapter 4, we apply theorem 5 to prove theorem 6 as stated below. This
answers question 1 for d(α, γ) = 3 and shows that d(α, T pγ (α)) = d(α, γ) + 1.

Theorem 6. If α and γ be two curves on Sg with d(α, γ) = 3, then d(α, Tγ(α))

= 4.

A byproduct of theorem 6 is infinitely many examples of vertices at a distance
4 in C(Sg). These examples are the first examples of curves at a distance 4 apart
on C(Sg>3) which can be explicitly seen as a three dimensional rendering. As a
demonstration of our method we construct a pair of distance 4 curves on S4 (Figure
2) from a minimally intersecting pair of distance 3 curves (Figure 1) as described in
[3]. In general, Aougab and Huang give a method to construct pairs of minimally
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4 1. INTRODUCTION

Figure 1. Minimally intersecting curves representing vertices at
a distance 3 in C(S4)

Figure 2. Curves on S4 representing vertices at a distance 4 in
C(S4). The intersection number of these curves is 49.

intersecting pair of curves which are at a distance 3 in C(Sg≥3). Using any such pair
of curves on Sg we can explicitly construct a pair of curves which are at a distance
4 in C(Sg).

The minimal intersection number between any two curves on Sg which are at
a distance n is denoted by imin(g, n). In [4], Aougab and Taylor proved that for
g ≥ 3, imin(g, 3) = 2g−1 and imin(2, 3) = 4. In [4], Aougab and Taylor proved that
in general, imin(g, 4) = O(g2). In chapter 4, we apply our examples of curves which
are at a distance 4 in C(Sg) to improve the known upper bound of imin(g≥4, 4) to
(2g − 1)2.

Corollary 1. For a surface of genus g ≥ 3, imin(g, 4) ≤ (2g − 1)2.

TH-3275_176123007



1.1. OVERVIEW OF THE THESIS 5

As a natural extension to theorem 6, we look into the analogous question 2.
We were motivated to look into this process with the long term promise of creating
examples of curves at a distance n+ 1 by using curves at a distance n apart.

Question 2. For curves, α and γ, on Sg with d(α, γ) = 4, what are the possible
values of d(α, T pγ (α)) for p ∈ N?

In chapter 5 we define a family of curves known as the scaling curves. These
curves are formed using arcs of γ \ α and we show that they fill along with α. The
idea behind a scaling curve is the intuition that γ encodes the information of a few
naturally occurring curves which are at a distance 3 from α and distance 1 from γ.

Let a0 = α, a1, a2, a3, a4 = γ be a geodesic in C(Sg). The authors in [4] have
shown that for some large enough constant B ∈ N, d(a0, T

B
TB
a3

(a0)
(a0)) = 6. The

authors use arguments involving subsurface projection to show that

d(a0, T
B
TB
a3

(a0)
(a0)) = 6

for a large enough constant B ∈ N. In chapter 6, we employ the same arguments to
show that for any general γ there exists a constantK ∈ N such that d(α, T kγ (α)) = 6,
for every k ≥ K, instead of the particular case when γ = TBa3(a0). We then show
that

4 ≤ d(α, Tγ(α) ≤ 6.

We use the scaling curves introduced in chapter 5 to give a necessary and sufficient
condition for d(a0, Ta4(a0)) = 4 in lemma 9.

Let N be an annular neighbourhood of a4 and Bm(Ta4(a0)) be the sphere of
radius m around Ta4(a0). Let δ ∈ B1(Ta4(a0)) and c ∈ B2(Ta4(a0))∩B1(δ). Then,
c is a standard single strand curve if i(c, a4) = 1 and if there exists an isotopic
representative of c such that (c ∩ a0) ⊂ N . In section 6.3, we describe a placement
of the components of N \ (a0 ∪ a4) which is equivalent to there being a curve on
Sg which is mutually disjoint from a0 and c. We call this arrangement of the
components as the stacking property. We then apply lemma 9 to arrive at the
following theorem which gives that 5 ≤ d(a0, Ta4(a0)) ≤ 6 for a judicious choice of
a0 and a4.

Theorem 9. Let α and γ be curves on Sg such that d(α, γ) = 4 and the
components of Sg \ (α ∪ γ) doesn’t contain any hexagons. Then, d(α, Tγ(α)) ≥ 5

if and only if there doesn’t exist any standard single strand curve c ∈ B2(Tγ(α))

having the stacking property.

In chapter 7 we give a pair of curves on S2 which are at a distance 5 apart on
C(S2) with intersection number 144. An immediate conclusion of this example is:

Corollary 4. imin(2, 5) ≤ 144.
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6 1. INTRODUCTION

1.2. Prospects

A conclusion from the above results is that as we ascend distances from d(a0, a3)

= 3 to d(a0, a4) = 4, the neatness of the result d(a0, T
p
an≤3

(a0)) = d(a0, an) +C(n),
where C(n) is a constant function, doesn’t carry over to the value of d(a0, T

p
a4(a0)).

Rather we have a pair of curves b0, b4 on S2 and a constant K ∈ N such that
d(b0, b4) = 4 and d(b0, T

k
b4

(b0)) = 6, ∀k ≥ K but d(b0, Tb4(b0)) = 5. This thus
prompts the following questions :

Question 3. What are the values of k ∈ N such that d(a0, T
k
a4(a0)) = 6?

Let v and w be curves on Sg such that d(v, w) = n ≥ 3. Further suppose
i(v, w) = imin(g, n). The components of Sg \ (v ∪ w) can be regarded as polygons
whose edges are arcs from the set (v \ w) ∪ (w \ v). In [6], the authors remark
from their observations regarding imin(g, n) when g = 2 and n = 3, 4 that for lower
distances the minimal intersection number is not only dependent on g and n but
also on the combinatorics of the polygons in Sg \ (v∪w). We observe from our core
proof idea of theorem 5 that the polygonal composition of Sg \ (a0∪T ka4(a0)) differs
from the polygonal composition of Sg \ (a0 ∪ a4) only in the number of rectangles.
The number of rectangles depend on k and i(a0, a4). This observation along with
the finding that d(b0, T

k
b4

(b0)) can either be 5 or, 6 depending on the value of k helps
us deduce that rectangles in Sg \ (a0 ∪ a4) have a significant role in determining
distances in C(Sg).

Question 4. Let a0 and a4 be curves on Sg such that d(a0, a4) = 4 and
i(a0, a4) = imin(g, 4). Is d(a0, Ta4(a0)) = 5?

We conjecture that question 4 has a positive answer. We further conjecture that
for any general γ with d(a0, γ) = 4 such that a0 and γ have arbitrary intersection
number, it need not be true that d(a0, Tγ(a0)) = 5. A possible counterexample to
this might be γ = Ta3(a0) where d(a0, a3) = 3 and d(a3, a4) = 1. We conjecture
that d(a0, TTa3 (a0)

(a0)) = 6.
From our observations that imin(g, 4) ≤ imin(g, 3)2, it prompts us to ask the

following question :

Question 5. Is imin(g, 5) ≤ imin(g, 4)2?

In [4], Aougab and Taylor showed that for large enough distances, imin(g, n)

is independent of g. From [17], we note that the geodesic triangle in C(Sg) with
vertices a0, a3 and T ka3(a0) is 0-hyperbolic for every k ∈ N. The results in [4]
give that the geodesic triangle in C(Sg) with vertices a0, a3 and TBTB

a3
(a0)

(a0) is
0-hyperbolic for some constant B ∈ N. As a consequence of the aforementioned
pair of curves, b0 and Tb4(b0), we observe that the geodesic triangle formed with
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1.2. PROSPECTS 7

vertices b0, b4 and Tb4(b0) is 1-hyperbolic. This leads to the conclusion that geodesic
triangles formed with vertices a0, an and T kan(a0) need not be 0-hyperbolic for all
values of k ∈ N. This leads to the following prospective question that was suggested
by Joan Birman:

Question 6. Let a0 and an be a pair of curves on Sg such that d(a0, an) = n.
Let ∆ be the geodesic triangle in C(Sg) with vertices a0, an and Tan(a0). What is
the minimum value of δ for which ∆ is δ-hyperbolic?

TH-3275_176123007
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce definitions and theorems that will be used in this
thesis. Since our work involves only closed surfaces, our definitions and theorems
are tailored accordingly. For the analogous definitions involving surfaces of finite
type, see [9]. This chapter doesn’t contain any original work of the author.

2.1. Surfaces

A surface is a real 2-manifold. In this thesis we will consider only closed,
oriented surfaces. By the classification of surfaces theorem, any closed, connected
and oriented surface is homeomorphic to the connected sum of a 2-dimensional
sphere with g ≥ 0 tori. Here g is called the genus of the surface. We will denote a
surface with genus g by Sg. The Euler-characteristic of Sg comes out to be 2− 2g

and it is a homeomorphic invariant of Sg. For the purpose of this thesis, we will
consider that g ≥ 2. We insist on this restriction on g as the geometry of the sphere
and the torus is different and relatively well explored for our purpose.

2.2. Curves

A curve on Sg is an embedding of the unit circle into Sg. A curve on Sg is called
essential if it is not null-homotopic. Throughout the thesis, by a curve on Sg, we
will mean essential curves on Sg. For any curve γ on Sg, [γ] is used to denote the
isotopy class of γ on Sg. Let µ and λ be two curves on Sg in transverse position.
The geometric intersection number of µ, λ is denoted as i(µ, λ) and is given as

i(µ, λ) = min{|a ∩ b| : a ∈ [µ], b ∈ [λ]}.

We say that curves, µ and λ, are in minimal position if µ and λ intersect at
i(µ, λ) points. A bigon is said to have been formed by µ and λ if an embedded disc

9
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10 2. PRELIMINARIES

in Sg is enclosed by the union of two arcs, one from µ and the other from λ. For
any given pair of curves, the following bigon criteria gives an algorithm to figure
out representatives that are in minimal positions.

Fact 1. (The Bigon Criterion) Two transverse curves on Sg are in minimal
position if and only if they do not form any bigons.

Proof. See [9, Proposition 1.7]. �

Fact 2. (Existence of minimal representatives) Given µ1, . . . , µk are curves in
Sg which are pairwise in minimal position and nonisotopic. Then any curve µk+1

on Sg has a representative that is in minimal position with µi for all i ∈ {1, . . . , k}.

Thus, as is the common practice in this subject whenever we consider a collec-
tion of curves on Sg, we will consider isotopic representatives of these curves which
are in minimal position with each other.

We say that µ and λ forms a filling pair of curves on Sg if the components of
Sg \(µ∪λ) are topological discs. If µ and λ fill Sg then Sg can also be considered as
a 2 dimensional CW-complex in the following manner : The 0 skeleton comprises
of the distinct points in µ∩λ. The edge set comprises of the arcs of µ\λ and λ\µ.
The faces comprises of the discs in Sg \ (µ ∪ λ).

2.3. Mapping Class Group

The mapping class group of Sg is the group of isotopy classes of orientation-
preserving homeomorphisms of Sg. We denote this group by Mod(Sg). Figure
1 and 2 give examples of finite order mapping classes. Both these examples can
be generalised to obtain elements of Mod(Sg) by considering the analogous rigid
motions of Sg in R3.

Figure 1. Rotating S3 about the central axis by π gives an order
2 mapping class inMod(S3) known as the hyperelliptic involution.

We now look at a class of infinite order mapping classes which were introduced
by Max Dehn.

TH-3275_176123007



2.4. DEHN TWISTS 11

2 /5

(a)

2 /5

(b)

Figure 2. Rotating S5 and S6 about the centre by 2π
5 gives order

5 mapping classes in Mod(S5) and Mod(S6) respectively.

2.4. Dehn Twists

Consider the annulus, A = S1 × [0, 1] and define T : A −→ A as (θ, r) 7→
(θ + 2πr, r). The action of T is called as “right twist” and by replacing (θ + 2πr)

by (θ − 2πr), a “left twist” is obtained.

Figure 3. Annular and cylindrical view of the action of T .

Let α be a curve in Sg. Let N be an annular neighbourhood of α and φ : A −→
N be an orientation preserving homeomorphism. Then, the Dehn twist about α,
Tα : Sg −→ Sg is defined as

Tα(x) =

{
φ ◦ T ◦ φ−1(x) x ∈ N
x x /∈ N

The action of Tα on S can be interpreted as “T acting on N” and keeping Sg \ N
fixed. The mapping class, Tα, is well-defined upto isotopy for the isotopy class of
α.

Let λ, µ be curves on Sg and p ∈ N. If i(µ, λ) = 0, we have that T pµ(λ) = λ.
If i(µ, λ) 6= 0, can obtain a picture of T pµ(λ) by performing a surgery of curves
described as follows. Suppose k = i(µ, λ). Draw pk distinct and parallel copies of
µ say, µ1, . . . , µpk on Sg which are in minimal position with λ. For i ∈ {1, . . . , pk},
at each point of µi ∩ λ, perform the surgery of curves as in figure 5. Performing
this surgery gives a representative of T pµ(λ) on Sg. Details of this surgery can be
found in [9, page 70].
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12 2. PRELIMINARIES

cut

paste

twist

�

T�

Figure 4. Action of Tα on the pink curve.

�i

�

T�(�)

�

Figure 5. Surgery of curves performed to obtain Tµ(λ).

The following are a few facts about Dehn twists that are necessary for the work
in this thesis.

Fact 3. Let µ and λ be curves on Sg and p ∈ Z. Then

i(T pµ(λ), λ) = |p|(i(µ, λ))2.

Proof. See [9, Proposition 3.2] �

Fact 4. Let µ be a curve on Sg. Then Tµ is an infinite order mapping class.

Proof. Corollary of Fact 3. �

Theorem 1. (Dehn-Lickorish theorem) Mod(Sg) is generated by finitely many
Dehn twists about non-separating curves.

Proof. See [9, Theorem 4.1]. �

2.5. Curve graph

The curve graph of Sg, denoted by C(Sg) is a 1 dimensional simplical complex
defined as follows : the 0-skeleton is in one-to-one correspondence with isotopy

TH-3275_176123007



2.6. MINIMAL INTERSECTION NUMBER 13

classes of essential simple closed curves on Sg. Two vertices span an edge in C(Sg)
if and only if these vertices have mutually disjoint representatives. By an excusable
abuse of notation, for any curve γ on Sg we will use γ to denote the curve as well
its isotopy class whenever the context is clear.

Fact 5. C(Sg) is a connected graph.

Proof. See [9, Theorem 4.3]. �

By virtue of fact 5, we can make C(Sg) into a path-metric space. We define the
distance, d, between any two vertices in C(Sg) as the minimum of lengths of all the
paths between these two vertices.

Fact 6. (C(Sg), d) is a δ-hyperbolic space.

Proof. See [19]. �

Fact 7. Let µ and λ be curves on Sg. Then, d(µ, λ) ≥ 3 if and only if µ and
λ fill Sg.

Proof. If µ and λ fill then i(µ, λ) 6= 0 and also, there doesn’t exist any curve
c on Sg that is disjoint from both µ and λ. Thus, d(µ, λ) can’t be 1 or 2. Hence,
d(µ, λ) ≥ 3.

Suppose µ and λ don’t fill Sg. If i(µ, λ) = 0, then d(µ, λ) = 1. If i(µ, λ) 6= 0,
then by the classification of surfaces theorem there exists a non-disc, non-annular
component of Sg \ (µ ∪ λ). Considering a curve in this particular component gives
a distance 2 path between µ and λ. Thus, d(µ, λ) < 3. �

2.6. Minimal intersection number

For a given distance n ∈ N and genus g, imin(g, n) is the quantity defined as

imin(g, n) = min{i(α, β) : d(α, β) = n}.

Since any two curves on C(Sg) which are at a distance 1 apart are disjoint, we have
that imin(g, 1) = 0. By the classification of surfaces theorem, we can always find
curves which intersect once and don’t fill Sg. Thus, such curves are at a distance 2

apart on C(Sg) and hence, imin(g, 2) = 1. By Euler characteristic considerations the
theoretical minimum for imin(g, 3) is 2g− 1. In [4], the Aougab and Taylor proved
that for g ≥ 3, imin(g, 3) = 2g − 1 and imin(2, 3) = 4. For showing imin(g, 3) =

2g − 1, they used the list of minimally intersecting filling pairs of curves given by
Aougab and Huang in [3]. In [10], the authors using the MICC software showed that
imin(2, 4) = 12 by listing all minimally intersecting pairs of curves at distance 4. In
[20], the author provides a pair of distance 4 curves on S3 with intersection number
21. Thus, imin(3, 4) ≤ 21. In [4], Aougab and Taylor proved that imin(g, 4) = O(g2)
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by answering a more general question by Dan Margalit that imin(g, n) = O(gn−2).
With this information, the following questions still remains open :

Question 7. What is imin(g, 4) for g ≥ 3?

In general,

Question 8. What is imin(g, n) for n ≥ 5?

2.7. Subsurface projection

We briefly define subsurface projections and state the bounded geodesic theo-
rem which were introduced in detail by Masur and Minsky in [19]. Let Y be an
isotopy class of an incompressible, non-peripheral, connected proper open subsur-
face of Sg which is not an annulus. An arc in Y is a homotopy class of properly
embedded paths in Y which cannot be deformed to a point. We define the arc
complex of Y , A(Y ) as : the set of vertices comprises of arcs and curves in Y and
any two vertex share an edge if they are disjoint. Let A0(Y ) and C0(Sg) denote the
vertex set of A(Y ) and C(Sg), respectively. Corresponding to a set X, we use P(X)

to denote the set of finite subsets of X. We define the following two functions :

• ψY : A0(Y ) −→ P(A0(Y )) such that
– if α is a curve on Y , ψ(α) = {α}
– if α is an arc on Y , ψ(α) are the boundary curves of a neighbourhood

of α ∪ ∂(Y )

• π′Y : C0(Sg) −→ P(A0(Y )) such that
– if α ∩ Y = φ, π′Y (α) = φ

– π′Y (α) is otherwise the set of all the essential arcs in Y ∩ α.

We define the subsurface projection πY by πY : C(Sg) −→ P(A0(Y )), α 7→
ψY (π′Y (α)). Let dY be a metric on C(Sg) such that dY (v, w) = dist(πY (v), πY (w)).

Suppose Y is an annular subsurface in Sg whose core curve, γ, is non-trivial.
Let Ŷ be the natural compactification of the annular cover of Sg such that Y lifts
to this cover homeomorphically. Such a compactification is obtained by equipping
Sg with a choice of hyperbolic metric. We define the curve graph corresponding to
Y , C(Y ), as follows : the set of vertices, C0(Y ), comprises of paths with end points
on the boundary component of Ŷ , modulo end points fixing homotopies. Any two
vertices share an edge if they have disjoint interiors. The subsurface projection πY
from C0(Sg) to P(C0(Y )) : If β∩γ = φ, πY (β) = φ. Otherwise, πY (β) consists of the
lifts of arcs of β ∩ Y in Ŷ with well-defined end points on the distinct components
of ∂(Ŷ ). We define dα analogous to dX where X is a non-annular subsurface.

The bounded geodesic theorem was discovered and proved by Masur and Minsky
in [19]. The version of this theorem stated below is given by Webb in [27].
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2.8. EFFICIENT GEODESICS IN C(Sg) 15

Theorem 2 (Bounded geodesic theorem). There is an M ≥ 0 so that for
Sg and any geodesic g in C(Sg), if each vertex of g meets the subsurface Y , then
diam(πY (g)) ≤M .

2.8. Efficient geodesics in C(Sg)

A fundamental hindrance while studying C(Sg) is that there are infinitely many
distinct vertices adjacent to any vertex in C(Sg). This pathological property of
C(Sg) is commonly referred to as its local-infinitude. In [19], the authors circum-
vented this local infinitude of C(Sg) by defining a set of geodesics called the tight
geodesics in C(Sg). They proved that between any two vertices of C(Sg) there are
only finitely many tight geodesics. Similar notions to consider special classes of
geodesics have been developed in [24], [25], [26] and [5] to overcome the local in-
finitude of C(Sg) and compute distances between any two vertices. The algorithm
in [5] is by far the most effective in calculating small distances in C(Sg).

Consider a geodesic, ν0, . . . , νN of length N ≥ 3 in C(Sg). An arc, ω in S is
a reference arc for the triple ν0, ν1, νN if ω and ν1 are in minimal position and
the interior of ω is disjoint from ν0 ∪ νN . Such arcs were considered by Leasure
in [15]. The authors of [5] define the following concept of efficient geodesics in
C(Sg) and prove that there exists finitely many initially efficient geodesic between
any two vertices of C(S). The oriented geodesic ν0, . . . , νN is said to be initially
efficient if i(ν1, ω) ≤ N − 1 for all choices of reference arc, ω. Finally, the geodesic
ν0, . . . , νN is efficient if the oriented geodesic νk, . . . , νN is initially efficient for each
0 ≤ k ≤ N − 3 and the oriented geodesic νN , νN−1, νN−2, νN−3 is also initially
efficient. The following theorem says that between any two vertices in C(Sg) there
are finitely many efficient geodesics.

Theorem 3. If v and w are vertices of C(Sg) with d(v, w) ≥ 3, then there
exists an efficient geodesic from v to w. Further, there is an explicitly computable
list of at most n6g−6 vertices v1 that can appear as the first vertex on an initially
efficient geodesic

v = v0, v1, . . . , vn = w.

In particular, there are finitely many efficient geodesics from v to w.

Proof. See [5, Theorem 1.1]. �

The following theorem from [10] gives a criterion for detecting vertices in C(S)

at distance at-least 4. This criteria is based on the results proved in [5] which
involves the efficient geodesics.

Theorem 4. For the filling pair, κ, ω, let Γ ⊂ C0(S) be the collection of all
vertices such that the following hold :
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Q2

Q3

Q4 Q1

Figure 6. Q1, Q2, Q3, Q4 is an example of an initially efficient
geodesic in C(S2).

(1) for γ ∈ Γ, d(κ, γ) = 1; and
(2) for γ ∈ Γ; for each segment, b ⊂ ω \ κ, i(γ, b) ≤ 1.

Then d(κ, ω) ≥ 4 if and only if d(γ, ω) ≥ 3 for all γ ∈ Γ.

Proof. See [10, Theorem 1.3]. �
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CHAPTER 3

SETUP

Let α and β be a filling pair of curves on Sg. The goal of this chapter is to
pick nice enough representatives for Tβ(α) w.r.t. the representatives of α, β and
their annular neighbourhoods. In section 3.1 we pick suitable representatives for α,
β and their corresponding annular neighbourhoods. In section 3.2, we describe the
arcs of Tβ(α) in the components common to the chosen annular neighbourhoods of
α and β. Finally, in section 3.3, we show that α and T pβ (α) fill Sg, for p ∈ N.

This chapter comprises of results from [17, Section 2] and [17, Step 1, Section
3].

For any ordered index in this thesis, we follow cyclical ordering. For instance,
if i ∈ {1, 2, . . . , k}, i = k + 1 will indicate i = 1.

3.1. Amenable to Dehn twist in special position

Let λ and µ be two simple closed curves on Sg, Rλ and Rµ be closed regular
neighbourhoods of λ and µ respectively. We choose Rλ and Rµ to be nice enough
as described in the following definition and follow the algorithm in [9] to obtain
Tλ(µ). However, our representative of the isotopy class of Tλ(µ) is chosen such that
Tλ(µ) is linear in the components of Rλ ∩Rµ.

Definition 1. Let λ and µ be two simple closed curves on Sg and let Rλ and
Rµ be closed regular neighbourhoods of λ and µ respectively. We say that the
4-tuple (λ, µ,Rλ, Rµ) is amenable to Dehn twist in special position if the following
hold:

(1) λ and µ intersect transversely and minimally on Sg,
(2) λ and µ fill Sg,

17
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18 3. SETUP

(3) the number of components of Rλ ∩Rµ is equal to the intersection number
of λ and µ and each of these components is a disc.

(4) µ and λ are in minimal position with the components of ∂(Rλ) and ∂(Rµ),
respectively.

Let λ and µ be two minimally and transversely intersecting simple closed curves
which fill Sg. In the following, we show that there exist closed regular neighborhoods
Rλ and Rµ of λ and µ respectively such that the 4-tuple (λ, µ,Rλ, Rµ) is amenable
to Dehn twist in special position. Consider a closed regular neighborhood, Rλ, of
λ. The two components of ∂Rλ are disjoint simple closed curves each of which
is isotopic to λ on Sg. Since µ intersects λ transversely, we can assume that µ
intersects the closed annulus Rλ in essential arcs which are not boundary reducible.
So, the number of these arcs will be precisely as many as the intersection number
of λ and µ. We can take small closed regular neighborhoods of these arcs of µ∩Rλ
in Rλ such that each such neighborhood is a rectangular disk, the length of which
runs parallel to the arcs of µ and the two breadth lines of which lie on the boundary
curves of Rλ with each breadth line lying on a different component of ∂Rλ. The
number of these disks is precisely the intersection number of λ and µ. Let r1, r2,
. . . , rk denote these discs. For i ∈ {1, . . . k}, we call any component of ri ∩ ∂Rλ as
the breadth line of ri. Now we extend ri’s into Sg \ Rλ to form Rµ. To do this,
we take a disks-with-handles presentation, Σ, of Sg \ Rλ. Σ is homeomorphic to
Sg−1,2, via a homeomorphism φ, where each of the two boundary components of Σ

is an image of each of the boundary component ∂Rλ via φ. Let A be a maximal
collection of properly embedded essential arcs that are pairwise non-parallel in Σ.
The image under φ of the closure of each arc of µ contained in the complement
of the annulus Rλ is an essential arc in Σ. These arcs cut Σ into disks because λ
and µ fill Sg. These arcs of φ(µ) can be assumed to be a disjoint collection of arcs,
each of which is parallel to exactly one of the arcs in A. We now take small closed
regular neighborhoods of these k arcs in Σ, call them s1, s2 . . . , sk, such that these
si’s are mutually disjoint. Now, φ−1 of these si’s glue to rj ’s in some order along
the breadth lines of rj ’s by suitably adjusting the breadth of rj ’s to give a regular
neighbourhood of µ, Rµ. This completes the construction of Rµ as required. Note
that r1, r2, . . . , rk are the disks of intersection of Rλ and Rµ by construction and
their number is equal to the intersection number of λ and µ.

3.2. Discs of transformation

Consider a 4-tuple (λ, µ,Rλ, Rµ) which is amenable to Dehn twist in special
position. Let i(λ, µ) = k and K := {1, 2, ..., k}. We construct a curve in the
isotopy class of Tλ(µ) which we call Tλ(µ) in special position w.r.t. the 4-tuple
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λ

μ

λ

μX Y

∂+Rλ ∂-Rλ

∂+Rμ

∂-Rμ

∂-Rλ ∂+Rλ

∂+Rμ

∂-Rμ

Figure 1. The figure to the left depicts A1 and the figure to the
right depicts a possible Ai.

(λ, µ,Rλ, Rµ). Start at any one of the components of Rλ ∩ Rµ and label it as A1.
Since µ intersects λ transversely, the arc µ1 of µ contained in A1 which has its
endpoints X and Y on boundary arcs of Rλ is such that X and Y lie on distinct
boundary components of ∂Rλ. We call the component of ∂Rλ containing X to
be ∂+Rλ and the other component containing Y to be ∂−Rλ. Equip A1 with the
Euclidean metric such that it is a square in the xy− plane. Two opposite sides of
A1 are formed from the arcs of ∂Rλ and the two remaining sides are formed from
arcs of ∂Rµ. The x-axis lies along µ1 and the value of the x-coordinate increases
from X to Y . Orient µ1 from X to Y . This induces an orientation on µ. Next we
pick k distinct points {q1, q2, ..., qk} in the interior of µ1 such that the x-coordinate
of qi is greater than the x coordinate of qj whenever i > j and i, j ∈ K. For each
i ∈ K, let λi be a curve in Rλ which is isotopic to λ and passes through qi. Further
for each i, j ∈ K, i 6= j let λi and λj be disjoint.

Orient λ1 such that the y-coordinate on λ1 increases when following this ori-
entation in the disk A1. Starting with A1, label the subsequent disk components,
Rλ ∩ Rµ, as A2, A3, ..., Ak, in the orientation of λ1. For each i ∈ K, Ai contains a
unique arc of µ which we label as µi. µi gets an induced orientation from µ. For
each i ∈ K, equip Ai with Euclidean metric and assume it to be a square in the
xy-plane where µi lies along the x-axis with the x coordinate increasing along the
orientation of µi. Assume Ai to be positioned such that µi is the line segment join-
ing the mid-points of the left and right sides of the square. In this orientation, call
the component of ∂Rµ which appears above µi as ∂+Rµ and the the component of
∂Rµ below µi as ∂−Rµ. However, note that the side of Ai which is formed from the
arcs of ∂+Rλ could either be to the right or to the left of this square. Accordingly,
the side of Ai which is formed from the arcs of ∂−Rλ could either be to the left or
to the right of this square. For i, j ∈ K, by an isotopy inside Ai, we can assume
that all the arcs of λj in Ai are straight lines.
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vi,1 vi,2 vi,k

vi,0 ui,k+1

ui,1 ui,2 ui,k

vi,1 vi,2 vi,k

vi,0 ui,k+1

ui,1 ui,2 ui,k

i,2 ,k-1

i,
λ1 λ2 λk

μi

Figure 2. Disk of transformation before (figure on the left) and
after (figure on the right) the Dehn twist

For each i, j ∈ K, let ui,j := Ai ∩ λj ∩ ∂+Rµ and vi,j := Ai ∩ λj ∩ ∂−Rµ. Also
for each i ∈ K let the left end point of µi in the square Ai be vi,0 and the right
end point of µi in the square Ai be ui,k+1. Construct the Dehn twist of µ about λ
as follows: For each j ∈ K ∪ {0} draw line segments, θi,j , connecting vi,j to ui,j+1.
Tλ(µ) is the curve

((µ ∪ (∪i∈Kλi)) ∩ (Sg \ (∪i∈KAi)) ∪ (∪i,j∈Kθi,j).

The schematic, Figure 2, shows Ai before and after this transformation. In the
complement of Ai’s the transformation described above does not disturb the curves
λi’s and µ. In the previous chapter, an algorithm to obtain the Dehn twist, Tλ(µ)

has been described such that the curves in the discs of transformation are as in
Figure 3. The line segments in Figure 2 are isotopic to the corresponding curves
in 3 which shows that the above transformation indeed results in Tλ(µ). When
Tλ(µ) is constructed as above and as shown in Figure 2, we say that Tλ(µ) is in
special position w.r.t. λ and µ. We call the k copies of λ, λi, i ∈ K, and µ to
be the scaffolding for Tλ(µ) and denote it by ({λi}i∈K , µ). We call the Euclidean
disks Ai, i ∈ K, along with the line segments θi,j ’s for j ∈ K to be the disks of
transformation for Tλ(µ). The points ui,j ’s, vi,j ’s, ui,k+1 and vi,0 for i, j ∈ K shall
hold their meaning as defined in the context of the disks of transformations. So,
using these phrases, when Tλ(µ) is in special position w.r.t. λ and µ, the scaffolding
of Tλ(µ) remains unchanged outside its disks of transformation. Inside the disks
of transformation for Tλ(µ), the schematic in Figure 2 describes the changes to its
scaffolding.

3.3. Filling pairs of curves using Dehn twists

Theorem 5. Let α and γ be a filling pair of curves on Sg. Then, α and T pγ (α)

also fills Sg.
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vi,k-1vi,1 vi,2 vi,k

vi,0 ui,k+1

ui,1 ui,2 ui,k

Figure 3. Surgery of the curves to obtain Tλ(µ)

Q1

Q4

Figure 4. The scaffolding for TQ1
(Q4), where Q1 and Q4 are

from example in figure 6 and the shaded region is a rectangle of
the scaffolding

Proof. Let i(γ, α) = k,K := {1, 2, ..., k},K−1 := {1, 2, ..., k−1} andK2−2g :=

{1, 2, ..., k+ 2− 2g}. We prove the theorem for p = 1. For p > 1, the proof remains
as it is with just the arguments for k copies of γ replaced by pk copies of γ. The
terminologies in the previous section can be adjusted accordingly to account for the
pk copies of γ instead of k copies of γ. This is because the following proof relies
on the idea of the surgery of curves, α and copies of γ, to obtain Tγ(α). And the
surgery to obtain T pγ (α) is similar to this surgery.

Since α and γ fill Sg, there is a 4-tuple (α, γ,Rα, Rγ) which is amenable to
Dehn twist in special position. Let Tγ(α) be in special position w.r.t to α and γ.
We denote the disks of transformation of Tγ(α) by Ai for i ∈ K. By an isotopy
we assume the curve α to be disjoint from Tγ(α) \Ai for i ∈ K and in each Ai we
further assume the arc αi := α∩Ai to be a straight line segment below the segment
connecting vi,0 and ui,k+1 (below µi in Figure 2).

Let ({gi}i∈K , α) be the scaffolding for Tγ(α). For j ∈ K−1, one of the com-
ponents of Sg \ (gj ∪ gj+1) is an annulus, Gj . The core curve of the annuli Gj is
isotopic in Sg to λ. Any component of Gj \α is a 4-gon which we call as a rectangle
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α
α

α
α

γ

γ

γ

Fp

g1
g2
g3
g4

g1

g2

g3
g4

Figure 5. The shaded portion represent the portions of B along
two edges corresponding to γ in Fp. The complement of the shaded
portion in Fp is F ′p.

of the scaffolding for Tγ(α). Figure 4 shows an example of such a rectangle of the
scaffolding. The disks Ai, i ∈ K, further divide each rectangle of the scaffolding
into three components. There is a unique i ∈ K such that Ai and Ai+1 intersect a
given rectangle of the scaffolding. Denote a rectangle of the scaffolding formed out
of Gj with its arcs of α lying in Ai and Ai+1 by Bi,j . Denote the sub-rectangles
Bi,j ∩Ai, by C ′i,j and Bi,j ∩Ai+1, by C ′′i+1,j . Also let B′i,j := Bi,j \ (C ′i,j ∪C ′′i+1,j).
Let

B = ∪ki=1 ∪k−1j=1 Bi,j .

Sg \ (α∪ γ) has k+ 2− 2g disk components by Euler characteristic considerations.
If Fp is a disk component of Sg \ (α ∪ γ), for some p ∈ K2−2g, then F ′p := Fp \ B
is a single disk as B intersects any Fp only in disks which contain a boundary arc
of Fp, namely arcs of γ. Figure 5 is a schematic of possible portions of B in Fp.
The components of Sg \ (α ∪ g1 ∪ · · · ∪ gk) comprise of k(k − 1) rectangles of the
scaffolding for Tγ(α), namely Bi,j where i ∈ K, j ∈ K−1, and k + 2 − 2g even
sided polygonal discs, namely F ′p, where p ∈ K2−2g. Let F ′′p denote F ′p \ Rα for
p ∈ K2−2g.

For each j ∈ K let wi,j := θi,j ∩ αi. For each i ∈ K and j ∈ K−1, let D′′i,j
be the parallelogram with vertices vi,j , vi,j+1, wi,j and wi,j+1 and D′i,j+1 be the
parallelogram with vertices wi,j , wi,j+1, ui,j+1, ui,j+2. In each disk Ai, for i ∈ K,
there is a pentagon, Pi,1, which is above αi and bounded by the lines θi,0, ∂Rγ ,
αi, θi,1 and the line segment of ∂+Rα between ui,1 and ui,2. Likewise, in each disk
Ai, for i ∈ K, there is a triangle, Ti,k+1, which is bounded by the lines αi, θi,k and
∂Rγ . Figure 6 shows a schematic before and after the transformation to the disk
Ai; the figure to the left shows the rectangles C ′i,1 and C ′′i,k and the figure on the
right shows Pi,1 and Ti,k+1.
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vi,1 vi,2 vi,k

vi,0 ui,k+1

ui,1 ui,2 ui,k

�i

g1 g2 gk

C'i,1

C''i,k

vi,1 vi,2 vi,k

vi,0
ui,k+1

ui,1 ui,2 ui,k

�i,2

�i,k-1

�i,k

�i

Pi,1

D''i,1

Ti,k+1

Figure 6. The disk of transformation for Tγ(α) : the figure on
the left shows the portion of the scaffolding for Tγ(α); the figure
on the right shows the pentagon Pi,1, the triangle Ti,k+1 and the
parallelograms formed due to αi and Tγ(α)

C''i,j-1

C'i,j

D''i,j-1

D'i,j

Figure 7. A schematic of Rα (figure on the left) and after (figure
on the right) the Dehn twist

Figure 7 shows a schematic of Rα before and after the transformation to the
scaffolding of Tγ(α). The shaded region in the figure on the left shows C ′i,j and
C ′′i,j−1 for some indices i, j. The shaded region in the figure on the right shows D′i,j
and D′′i,j−1 for some indices i, j.

For i ∈ K, note that all the disks Ai, occur in some sequence in the annulus
Rα when moving along α. So, a disk Ai is connected to some disk Aj on the left
and to some other disk Ap on the right by a single arc of α \Rγ , for some distinct
indices i, j, p ∈ K. The schematic for two disks Ai and Aj , for some i, j ∈ K, which
are connected via a single arc of α \ Rγ and an arc of Tγ(α) \ Rγ is as shown in
the Figure 8. Note that this schematic is generic since for every j ∈ K, there is a
distinct i ∈ K such that Aj occurs to the left of Ai, in the sense mentioned above.

Figure 8 is a schematic of a portion of Figure 7 in which the following are
the possibilities of how the edges corresponding to ∂(Rγ) of the adjacent discs of
transformation match up, namely ∂+Rγ and ∂+Rγ face each other, ∂+Rγ and ∂−Rγ
face each other or ∂−Rγ and ∂−Rγ face each other. In this schematic, we see that
the pentagon Pi,1 of the disk Ai is connected to the triangle Tj,k+1 of Aj via an
arc of α \ Rγ , ωi,j , and an arc of Tγ(α), ηi,j . The disk, Ri,j outside Rγ bounded
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∂ (R )

∂+(R )

lower disk region, R2

Aj Ai

upper disk region,R1

Ri,j

i,j

i,j

conduit

Figure 8. Two adjacent disks of transformation in Rα

by ωi,j , ηi,j and two arcs of ∂Rγ , will be called a conduit. Equip the conduit with
the Euclidean metric and assume that Ri,j is a rectangle with two opposite sides
ωi,j and ηi,j . Now Pi,1 ∪ Ri,j ∪ Tj,k+1 is a 4-gon bounded by four arcs viz. (i)
θi,0 ∪ ηi,j ∪ θj,k, (ii) αj ∪ ωi,j ∪ αi, (iii) θi,1 and (iv) the arc of ∂+Rα between ui,1
and ui,2. This protracted 4-gon will be denoted by D′i,1.

Let S′ = Sg \ Rα. The components of Sg \ (α ∪ Tγ(α)) are the components of
S′ \ Tγ(α) and the components of Rα \ (α ∪ Tγ(α)) glued at the boundary of Rα.
Since the changes to the scaffolding of Tγ(α) is restricted to Rα, the components
of S′ \ Tγ(α) are precisely the disc components of S′ \ (g1 ∪ · · · ∪ gk).

The components of S′ \ (g1 ∪ · · · ∪ gk) are B′i,j , i ∈ {1, 2 . . . k}, j ∈ K−1, along
with disks F ′′p , p ∈ K2−2g, as explained above. The components of Rα \ (α∪Tγ(α))

will be examined using the schematic Figure 8 of a portion of Rα. There are four
kinds of regions in Rα. The upper disk regions, like R1 in the schematic Figure 8,
the lower disk regions, like R2 in the schematic Figure 8, and the disks D′i,j , D′′i,j ,
i ∈ K, j ∈ K−1. Figure 8 shows how the upper and lower disk regions are glued
to disks F ′′p for p ∈ K2−2g. For each p ∈ K2−2g, after gluing the lower disk regions
and the upper disk regions to the respective disks F ′′p , we get disks which we denote
by F ′′′p . We know that F ′′′p is a disk because the upper and the lower disk regions
are disjoint, except for the points wi,j on the boundary and share a single arc of
∂Rα with a unique F ′′p . For each p ∈ K2−2g, we call F ′′′p to be the modified disk
corresponding to the initial disk Fp.

For each i ∈ K and j ∈ K−1, the line segment of ∂+Rα between ui,j ui,j+1

is the common boundary of C ′i,j and D′i,j . Likewise, for each such i, j, the line
segment of ∂−Rα between vi,j vi,j+1 is the common boundary of C ′′i,j and D′′i,j .
So, for such i, j, when considering the components of Sg \ (α ∪ g1 ∪ · · · ∪ gk) the
rectangular coreB′i,j is connected to C ′i,j along the boundary segment ui,j ui,j+1 and
to C ′′i+1,j along the boundary segment vi+1,j vi+1,j+1, whereas when considering the
components of Sg \ (α∪Tγ(α)), the rectangular core B′i,j is connected to D′i,j along
the boundary segment ui,j ui,j+1 and D′′i+1,j along the boundary segment vi+1,j
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vi+1,j+1. So the rectangles of the scaffolding for Tγ(α), Bi,j , which are components
of Sg \ (α ∪ g1 ∪ · · · ∪ gk), after the transformation in the disks of transformation
for Tγ(α) result in disks Ei,j := B′i,j ∪D′i,j ∪D′′i+1,j which now are components of
Sg \ (α∪Tγ(α)). For each p ∈ K2−2g, F ′′′p is a disk as seen earlier. The components
of Sg \ (α∪Tγ(α)) are precisely the disks F ′′′p and Ei,j where p ∈ K2−2g, i ∈ K and
j ∈ K−1. This proves that the components of Sg \ (α ∪ Tγ(α)) are all disks and
hence proving d(α, Tγ(α)) ≥ 3.

Thus, we have that α and Tγ(α) fills Sg.
�
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CHAPTER 4

DISTANCE 4 CURVES ON C(Sg)

In this chapter we produce examples of pairs of curves which are at a distance
4 apart on C(Sg) using Dehn twists and a pair of curves which are at a distance 3

apart. Let α and β be a pair of curves on Sg such that d(α, β) = 3. In section 4.1,
we label a few components of an annular neighbourhood of β cut along Tβ(α) ∪ α.
In section 4.2, we prove that d(α, T pβ (α)) = 4, for p ∈ N. Using this result, in
subsection 4.2.1, we show that imin(g, 4) ≤ (2g− 1)2. In subsection 4.2.2, we prove
that the geodesic we consider between α and Tβ(α) is an initially efficient geodesic.

Unless otherwise defined, we will adhere to the notations used in the previous
chapters.

4.1. Terminology

Let α and γ be a filling pair of curves on Sg. Thus, d(α, γ) ≥ 3. Let i(γ, α) = k,
K := {1, 2, ..., k}, K−1 := {1, 2, ..., k − 1} and K2−2g := {1, 2, ..., k + 2− 2g}. Since
α and γ fill Sg, there is a 4-tuple (α, γ,Rα, Rγ) which is amenable to Dehn twist in
special position. Let Tγ(α) be in special position w.r.t to α and γ. We denote the
disks of transformation of Tγ(α) by Ai for i ∈ K.

The components of Rγ \ Tγ(α) are disks and their boundary consists of two
arc segments of Tγ(α) and one each of ∂+Rγ and ∂−Rγ . We call these disks as
rectangular tracks. The word tracks derives its motivation from how these tracks
appear in Rγ . Figure 1 shows Rγ and rectangular tracks inside Rγ .

Since i(α, γ) = k, there are k components of α ∩ Rγ . Every component of
α \ Tγ(α) is either contained in Rγ or, has a sub-arc which is contained in Rγ . For
any i ∈ K, αi intersects the rectangular tracks.

Let i0 ∈ K. In the schematic Figure 6, Ai0 has exactly k + 1 arcs of Tγ(α).
Call θi0,0 to be the leftmost arc of Ai0 and θi0,k to be the rightmost arc of Ai0 .

27
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28 4. DISTANCE 4 CURVES ON C(Sg)

γ

Tγ(α)

α1
α2

αk

γ

α1
α2

αk

Figure 1. The rectangular tracks shown inside the annulus Rγ

αi+1αi αi+2 αi+(k-1)

αi

Tγ(α)

Tγ(α)

∂(Rγ) ∂(Rγ)

Figure 2. A rectangular track Ti along with arcs of αi in it

Let us consider one component of Tγ(α) ∩ Rγ , call it ρi0 , which intersects Ai0 in
its leftmost arc. This ρi0 intersects Ai0 precisely in the arcs θi0,0 and θi0,k and it
intersects Aj for every j ∈ K \ {i0} in the arcs θj,m where m = (j − i0)(mod k).
We constructed Tγ(α) in special position w.r.t. α and γ with the motivation that
ρi0 will intersect Ai0 and Aj in exactly these arcs.

From this discussion it is clear that ρi0 intersects each αj , for j ∈ K, exactly
once. It is also clear that, for j ∈ K, the points of ρi0 ∩ αj lie on ρi0 in the order
αi0+1, ..., αk, α1, ..., αi0−1, αi0 when ρi0 is traversed from ∂+Rγ to ∂−Rγ . We now
consider two arc components, ρi0 and ρi0+1, of Tγ(α)∩Rγ and the rectangular track,
Ti0 , which is enclosed by these two components in Rγ . We equip this rectangular
track Ti0 with the Euclidean metric so that the boundary arcs ρi0 , ρi0+1, and the
arcs of Ti0 ∩ ∂Rγ are all straight lines and so that Ti0 is a rectangle. We refer to
Ti0 ∩ ∂+Rγ as the left end of the rectangle and Ti0 ∩ ∂−Rγ as the right end of this
rectangular track. We can draw the arcs of αj , for j ∈ K, as straight line segments
in the rectangular tracks Ti0 . Figure 2 shows a schematic of Ti where i ∈ K.

From this schematic, at both the left and right end of this rectangular track Ti,
ai is a common boundary to a triangle and a pentagon. We call αi as the starting
arc of this rectangular track Ti.

Figure 3 shows the two possible schematics of Ai as pictured in Rγ .
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α2α1 αk

∂-(�α)

∂+(�α)

Tγ�α)

γ

∂-(�α)

∂+(�α)

Tγ(α)

γ

α1 α2 αk

Figure 3. Ai shown inside Rγ in the two possible ways : the
figure on the left shows αi oriented from top to bottom; the figure
on the right shows αi oriented from bottom to top

For either of the two possible cases observed in Figure 3, a portion of one of
the two pentagons of Ti appears in the Ai which is between αi and ∂+Rα, where
αi is the starting arc of this track. We call this pentagon the upper pentagon of the
rectangular track Ti, owing to the viewpoint that ∂+Rα is the upper boundary of
Rα. A portion of the other pentagon of Ti appears in Ai which is between αi and
∂−Rα. We call this pentagon the lower pentagon of the rectangular track. Likewise,
we define the upper triangle and the lower triangle of a rectangular track Ti.

4.2. Distance 4 curves

Theorem 6. If α and γ be two curves on Sg with d(α, γ) = 3, then d(α, Tγ(α)) =

4.

Proof. Let ν0, ν1, ν2, ν3 be a geodesic from the vertex ν0 corresponding to
α to the vertex ν3 corresponding to γ in C(Sg). Let Tγ(ν0) be the vertex in C(Sg)
corresponding to Tγ(α). The existence of the path Tγ(ν0), Tγ(ν1), Tγ(ν2) = ν2, ν1,
ν0 gives that d(Tγ(α), α) ≤ 4

Let γ ∈ Γ as in the statement of the Theorem 4. We prove that d(γ, α) ≥ 3 by
showing that γ and α fill Sg. By Theorem 4, this will imply that d(Tγ(α), α) ≥ 4.
We prove the theorem in 2 steps : in step 1 we perform an isotopy of γ such that
the arcs of γ \α in Rγ replicate the arcs of γ \α. In step 2 we prove that any γ ∈ Γ

fills Sg with α and thus d(γ, α) ≥ 3.
Step 1 : To prove that α and γ fill Sg it suffices to show that there exists a non-
empty, finite subset of arcs of γ \α, Υ, such that (Sg \α)\Υ are discs. We show the
existence of Υ by carefully choosing an isotopic copy of γ. We obtain this isotopic
copy of γ by first performing an isotopy, I1, a finite number of times such that the
end points of each of the arcs of γ in Rγ are essential and not boundary reducible.

TH-3275_176123007



30 4. DISTANCE 4 CURVES ON C(Sg)

We then define a second isotopy, I2, which when performed a finite number of times
will ensure that every intersection point of γ and α lie in Rγ . We then define an
isotopy, I3, called the normalization move, which proves that there is an arc of γ
in Rγ , γ0, such that the arcs γ0 \ α act like the arcs of γ \ α in Sg \ α.

It can be observed that i(γ, α) 6= 0 because if γ is disjoint from both α and Tγ(α)

then we would get a path of length 2, namely α, γ, Tγ(α). Using the triangular
inequality and the fact that Mod(Sg) acts on C(Sg) by isometries, we have that
d(γ, γ) ≥ d(Tγ(α), γ) − d(γ, Tγ(α)) = d(Tγ(α), Tγ(γ)) − d(γ, Tγ(α)) = 3 − 1 =

2. Thus, we also conclude that i(γ, γ) 6= 0. Since γ intersects γ, it intersects
Rγ . It cannot be completely contained in Rγ because every simple closed curve
contained in an annulus bounds a disk or is isotopic to the core curve of the annulus.
Since neither of these is true, it follows that that γ intersects Rγ in arcs. Since
i(γ, Tγ(α)) = 0, each component of γ∩Rγ has to be completely contained in one of
the rectangular tracks described by Tγ(α). Such a component arc of γ could either
be boundary reducible or essential in Rγ .

We consider an isotopy I1 of γ, as follows: In the case that a component arc
of γ in Rγ is boundary reducible in Rγ , we can perform the boundary reduction of
γ preserving its minimal intersection position with α and Tγ(α). This is possible
because an arc of γ which is boundary reducible in Rγ and is contained in the
disk Ti will bound a bigon with one boundary arc of Rγ in Ti. Also, since γ was
already in minimal intersection position with α, it does not bound bigons with the
arcs αj inside Ti. Call the isotopy of γ which reduces all the boundary-reducible
arcs of γ ∩ Rγ as I1. After the isotopy I1, we can assume that all the arcs of
γ in Rγ are essential. We know that there is at-least one component of γ ∩ Rγ
which is an essential arc of Rγ as γ cannot be disjoint from Rγ . By the hypothesis
that i(γ, b) ≤ 1 for b ⊂ α \ Tγ(α) each rectangular track can contain at-most one
component of γ ∩Rγ .

Next, we describe an isotopy I2 of γ such that all the points of γ ∩ α will lie
inside Rγ and so that no new boundary reducible arc components of γ ∩ Rγ are
introduced and γ’s minimal intersection position with α and Tγ(α) is retained. To
this end, suppose that a point of γ ∩ α lies outside Rγ .

Following the construction of the disk D′i,1 described above using Figure 8, we
see that the upper pentagon of the rectangular track Ti is connected to the upper
triangle of the rectangular track Tj via a conduit Ri,j where i, j ∈ K are such that
Aj is to the left of Ai in Rα as in schematic 8.

If a point of γ ∩ α, x0, lies outside Rγ , then it has to lie on ωi,j for some i
and j such that i, j ∈ K, i 6= j. We now refer to the dotted line in Figure 4. Since
the intersection of γ and α is transverse, an arc of γ, call it δ lies on the two sides
of the conduit Ri,j , one inside and one outside Ri,j . The endpoint P of the arc δ
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∂-(Rα)

∂+(Rα)

aj

∂-(Rγ)

∂-(Rα)

∂+(Rα)

ai

∂+(Rγ) ∂-(Rγ) ∂+(Rγ)

Tγ(α) Tγ(α)

Figure 4. The isotopy I2 moving points of γ ∩ α into Rγ

inside Ri,j is also the endpoint of some other arc of γ as γ is a closed curve. If P
connects to an arc of γ lying in the upper triangular region of the track Tj , then an
essential arc δ1 of γ∩Rγ lies in Tj with its endpoint Q on ∂Rγ in the upper triangle
of Tj so that δ, the arc PQ and δ1 together form a bigon with α contradicting
the minimal intersection position of γ with α. So, P connects to an arc of γ in
the upper pentagon in the track Ti as is the dotted line in Figure 4. Consider an
isotopy I2 which slides the point x0 onto αi. The image of the arc component of
γ ∩Rγ which is in Ti, under I2 has its endpoint in the lower triangle of Ti and the
image of x0 lies in Rγ . A schematic for this isotopy I2 is shown in Figure 4.

After finitely many such isotopies, we can now assume that all the points of
γ ∩ α lie inside Rγ . Now consider an isotopy I3 of γ as follows: If any of the
components of γ∩Rγ has its endpoint on the boundary of the upper triangle of Tj ,
for some j ∈ K , then by the above discussion, γ cannot intersect ωi,j or ηi,j , for
some i ∈ K such that the arcs of Ti and Tj forms the opposite sides of a conduit
Ri,j . So γ ∩ Ri,j is an arc MN which has its endpoints M ∈ Tj and N ∈ Ti on
∂Rγ . Further, since γ is a closed curve, γ ∩ Ti is an arc with its endpoint as N
such that N necessarily lies in the upper pentagon of Ti. Conversely, if any of the
components of γ ∩Rγ has its endpoint, z0, on the boundary of the upper pentagon
of Ti, then it should be connected to an arc, g, of γ in the conduit Ri,j . Note that
the endpoints, z0, z′0 of g are on ∂Rγ . There exists an arc component of γ∩Rγ lying
in Tj such that z′0 is on the boundary of the upper triangle of Tj , as the dotted line
in Figure 5 shows. If any such arc g of γ exists, consider an isotopy, I3, of g such
that the image, I3(g), lies outside Ri,j . A schematic of this is Figure 5.

The component of γ ∩ Rγ in Tj now has an endpoint on the boundary of the
lower pentagon of Tj and the component of γ ∩ Rγ in Ti has an endpoint on the
boundary of the lower triangle of Ti. Also the image of γ ∩ α under I3 moves a
point of γ∩α from the boundary of the upper traingle of Tj to the boundary of the
lower pentagon of Ti. We call I3 to be a normalization move on γ. After finitely
many normalization moves performed on γ, wherever applicable, we can assume
that every component of γ ∩ Rγ is contained in a rectangular track Ti for some
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∂-(Rα)

∂+(Rα)

ai

∂-(Rγ)

∂-(Rα)

∂+(Rα)

aj

∂+(Rγ)
∂-(Rγ) ∂+(Rγ)

Tγ(α) Tγ(α)

Figure 5. A schematic showing the normalization move, the isotopy I3

αi��αi αi�� αi��

αi

γ∩Rγ¯

Tγ(α)

Tγ(α)

∂��γ� ∂��γ�

Figure 6. The portion of γ in rectified position inside Ti

α2α1 αk

γ1

γ

H�

Figure 7. Schematic showing H1 and γ1 in Rγ

i ∈ K such that the endpoints of that component lie on the boundary of the lower
triangle and the lower pentagon of Ti. So a schematic of every component of γ∩Rγ
inside Ti is as in Figure 6.

After these isotopies I1, I2, I3 of γ, we say that γ is in a rectified position. We
now prove that γ in rectified position and α fill Sg. From now on we assume that
γ is in a rectified position.

Step 2 : For i ∈ K, let Hi be the rectangular component of Rγ \ (∪i∈Kαi)
containing the arcs ai and ai+1 on its boundary. Each of these Hi contains a
unique segment, γi, of the core curve γ. The schematic 7 shows H1 and γ1 for
instance.
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J
J'

ai

ai-1

P1

P2

γi-1

J

ai
P1

J'

ai-1

P2

γi-1

P1

P2

P1

P2

γ1¯

γ1¯

γ1¯

Figure 8. The figure on the left shows disks J and J ′ formed
by cutting along γi−1; the figure on the right shows the new disks
formed when J ∪ J ′ are cut along γ1

We say that an arc, g of γ covers γi if g ⊂ Hi has its end points on αi and
αi+1 and g is isotopic in Hi to γi through arcs whose end points stay on αi, αi+1.
Since γ and α form a filling pair, the set of essential arcs, {γ1, . . . , γk} fill Sg \α. It
follows that γ fills Sg along with α if segments of γ \α cover γi for all i with i ∈ K.

Since γ is in rectified position, each component of γ ∩ Rγ already covers all
γi except one as in Figure 6. More precisely, if a component of γ ∩ Rγ is in a
rectangular track Ti, then γ covers every γj where j is such that 1 ≤ j ≤ k and
j 6= i− 1. So, if γ ∩Rγ has two distinct components, then each component has to
lie in Ti for distinct i and hence γ covers γj for j ∈ {1, 2, . . . k}. We conclude that γ
and α fill Sg in this case. Now it remains to show that if there is a single component
of γ∩Rγ , which is an essential arc of Rγ and is contained in some rectangular track
Ti, then γ and α fill Sg. As in the previous case, γ covers every γj where j is such
that 1 ≤ j ≤ k and j 6= i− 1. The components of Sg \ (α ∪1≤j≤k,j 6=i−1 γj) will be
disks except possibly one which could be a cylinder. This can be seen as follows.
Since α and γ fill Sg, the components of Sg \ α ∪1≤j≤k γj are disks. Each segment
of γj \ α for j ∈ {1, 2, ..., k} contributes to two distinct edges of a component J0 or
two separate components J, J ′ of Sg \ α ∪1≤j≤k γj .

Let P1 := γ∩αi and P2 := γ∩αi−1 be points in Ti which appear on the unique
component of γ ∩ Rγ . Let [P1, P2] represent the arc of γ in Rγ with endpoints
P1 and P2 and γ1 := γ \ [P1, P2]. γ1 is contained in all the components of Sg \
α∪1≤j≤k,j 6=i−1 γj which contain the arcs αi−1 and αi on their boundary. We know
that there is at-least one such component because γi−1 is also such an arc which
joins αi−1 to αi. If γi−1 is the boundary of J, J ′, then it would have been an arc
which connected αi−1 on one disk to αi on another disk. Note that both αi and
αi−1 are also boundary arcs of both J and J ′. So, we would find P1 on the disk
containing αi and P2 on the disk containing αi−1. When we join J and J ′ along
γi−1 we get a disk where γ1 is an arc from P1 to P2 intersecting γi−1. Cutting along
γ1 still yields two different disks. The schematic, Figure 8 shows this situation.
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P1 P2

�i-1

�i-1

ai ai-1
P1 P2

�1

�i-1

�1¯

¯

�1¯
�i-1

�1¯

Figure 9. The disk J0 glued to itself along γi−1 and cut along γ1

If γi−1 were on the boundary of J0 representing two edges of J0 then it would
have been an arc which connected αi−1 to αi. When we glue J0 to itself along
γi−1, we get a cylinder, A, where αi and αi−1 will be arcs on different boundary
components of A. So we would find P1 and P2 on distinct boundaries of A and
hence γ1 would be an essential arc on A. So cutting A along this arc γ1 would yield
a disk as shown in the schematic, Figure 9.

In any case, we get disks by cutting Sg \ α along the arcs of γ \ α.
Thus, we have finished our application of the distance ≥ 4 test and we have

that d(Tγ(α), α) ≥ 4. This along with the existence of the length 4 path between
α and Tγ(α) proves the theorem. �

Theorem 7. If α and γ is a pair of curves on Sg with d(α, γ) = 3 then for
p ≥ 2, d(α, T pγ (α)) = 4.

Proof. Let ν0 = α, ν1, ν2, ν3 = γ be a geodesic in C(Sg). For p ≥ 2, the
existence of the path T pγ (ν0), T pγ (ν1), T pγ (ν2) = ν2, ν1, ν0 gives that d(α, T pγ (α)) ≤ 4.

Let k = i(α, γ). T pγ (α) is obtained by performing a surgery on pk copies of γ
and α similar to the surgery (Figure 3) performed on k copies of γ and α to obtain
Tγ(α).

Since only the k copies of γ in the surgery of Tγ(α) is changed to pk copies of γ
to obtain T pγ (α) and as k is arbitrary throughout the definitions and proofs in the
previous part, we can prove that d(α, T pγ (α)) ≥ 4 in exactly the same way as the
proof of Theorem 6. �

4.2.1. Upper bound for imin(g, 4). As an application of Theorem 6 we are
able to obtain an upper bound for the minimum intersection number for a pair of
curves at a distance 4 in C(Sg).

Corollary 1. For a surface of genus g ≥ 3, imin(g, 4) ≤ (2g − 1)2.

Proof. Aougab and Huang [3] proved that imin(g, 3) = 2g−1 for g ≥ 3. Now,
on Sg, for g ≥ 3, suppose that α and β are two such minimally intersecting curves
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4.2. DISTANCE 4 CURVES 35

with d(α, β) = 3. Then i(α, Tβ(α)) = (2g−1)2 and by Theorem 6, d(α, Tβ(α)) = 4.
So imin(g, 4) ≤ (2g − 1)2. �

4.2.2. An initially efficient geodesic.

Theorem 8. If α = ν0, ν1, ν2, ν3 = γ is an initially efficient geodesic in C(Sg)
then so is Tγ(α), Tγ(ν1), ν2, ν1, α.

Proof. For p ∈ K2−2g, let F ′′p be the components of Sg \ {α,Rγ} as in the
proof of Theorem 6. Since the geodesic α, ν1, ν2, γ is an initially efficient one, each
segment of ν1 intersects every reference arc in Ei at most twice. In particular,
arcs of ∂(Rγ) that form the edges of Ei intersect ν1 at most twice. It follows
from here that there are at the most two segments of ν1 in each rectangular track
Ti as defined in. A schematic of this is shown in figure 10. Further, since the
interior of a reference arc is disjoint from α ∪ Tγ(α), it is sufficient to check for the
initial efficiency of the geodesic, Tγ(α), Tγ(ν1), ν2, ν1, α in the modified disks F ′′′p ,
abbreviated F , corresponding to Fp , abbreviated E.

Since E and F are homeomorphic to a 2g-gon. Without loss of generality
assume E and F to be a regular Euclidean regular polygon with 2g sides. Starting
at any segment of α in E, we label the edge as α1. Label the edges of E in a
clockwise direction, starting at α1 as γ1, α2, γ2, . . . , γg. Let S′ = Sg \ Rγ . Since
the components of S′ \ {α, γ} and S′ \ {α, Tγ(α)} are the same, it follows that for
every edge, aj0 in F corresponding to α, there exists a unique i0 ∈ {1, . . . , g} such
that aj0 ⊂ αi0 . Index the edges, aj0 of F such that j0 = i0. Label the edge of Tγ(α)

in F between ai and ai+1 as ti. Let ω be a reference arc in F with end points on
tp and tq for some p, q ∈ {1, . . . , g}. Suppose to the contrary that ω ∩ Tγ(ν1) ≥ 3.
Then there exists three segments, z1, z2, z3 of Tγ(ν1) in F such that zj ∩ ω 6= φ.
For j ∈ {1, 2, 3}, let the end points of zj lie on aj1 and aj2 . From our previous
discussion on Dehn twist and figure 11, there exists arcs of ν1 in E with end points
on γj1 and γj2 for all j ∈ {1, 2, 3}. Consider a line segment, ω′ in E from an interior
point of ap to an interior point of aq. Then ω′ is a reference arc for the triple, α,
ν1, γ and ω′ ∩ ν1 ≥ 3. This contradicts that α, ν1, ν2, γ is an initially efficient
geodesic. Hence, ω ∩ Tγ(ν1) ≤ 2 for any choice of reference arc, ω for the triple
Tγ(α), Tγ(ν1), α.

Since Tγ(α), Tγ(ν1), ν2, ν1, α is already a geodesic we have that d(Tγ(ν1), α) = 3.
This gives that Tγ(ν1) is an initially efficient geodesic of distance 4 from Tγ(α) to
α.

�

TH-3275_176123007



36 4. DISTANCE 4 CURVES ON C(Sg)
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γ γ

Tγ(�1)
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Figure 10. There can be at-most two distinct segments of Tγ(ν1)
in any rectangular component of Sg \ (α ∪ Tγ(α)) in Rγ
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Figure 11. Initial efficiency of Tγ(a1) follows from the initial ef-
ficiency of a1
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CHAPTER 5

SCALING CURVES

Let γ be an arbitrary curve on Sg. In this chapter, sections 5.1 and 5.5 char-
acterises certain sets of arcs that fill Sg \ γ. Let α and β be curves on Sg with
d(α, β) = 4. In section 5.2, we describe particular components of the annular
neighbourhood of β cut along α. We observe some of the properties of these com-
ponents in section 5.4. In section 5.3, we construct curves on Sg, which we call the
scaling curves, from arcs of β \ α and prove that these curves are at a distance at
least 3 from α.

The objective of this chapter is to introduce a few terminologies and certain
properties of scaling curves that will aid us in analysing the values of d(α, Tα(β))

in the following chapter. The work in this chapter is part of the preprint [16].

5.1. Filling system of arcs

Let α and β be a filling pair of curves on Sg. Let β′ ∈ β \ α. Let D be the
polygonal disc obtained by gluing the two components of Sg \ (α∪β) along β′. Let
b1 be an arc in D such that b1 and β′ have their end points on the same arcs of
α ∩D. We say that b1 covers β′ if b1 is isotopic to β′ by an isotopy of arcs in D
having end points on the same arcs of α ∩D as β′ and b1.

Let A be a non-empty set of essential arcs on Sg \ α such that the end points
of every arc in A lies on the boundary. We call A a filling system of arcs of Sg \ α
if the components of (Sg \ α) \ A are discs.

Lemma 1. Let α and β be a pair of filling curves on Sg. Let i(α, β) = n and
the components of β \ α be {βi : 1 ≤ i ≤ n}. Let Γ be a non-empty set of essential
arcs on Sg \ α. If for every i ∈ {1, . . . , n}, there exists gi ∈ Γ such that gi covers
βi, then Γ is a filling system of arcs of Sg \ α.

37
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38 5. SCALING CURVES

Proof. Consider the components of (Sg \α) \∪{gi}1≤i≤n. These components
coincide with the components of (Sg\α)\β and hence, are discs. Since ∪1≤i≤n{gi} ⊂
Γ, the components of (Sg \ α) \ Γ are also discs. �

For any curve α on Sg, we denote the annular neighbourhood of α as Rα. Let
a0, a1, a2, a3, a4 be a geodesic in C(Sg). Let (a0, a4, Ra0 , Ra4) be amenable to
Dehn twist in special position. The following lemma 2 states that for the purpose
of cutting Sg \ a0 into discs, not every arc of a4 \ a0 is necessary. We can forgo any
one of the arcs of a4 \ a0.

Lemma 2. Let b be a component of a4 \a0. Then (a4 \a0)\ b is a filling system
of arcs of Sg \ a0.

Proof. Each component of a4 \a0 is common to two components of Sg \ (a0∪
a4). Let the components of Sg \ (a0 ∪ a4) that share the edge corresponding to b
be D1 and D2.

We first show that D1 6= D2. On the contrary, if D1 = D2 let p be the central
curve of the annulus obtained by gluing D1 along b. Being in minimal position with
a0 and a4, p forms an essential curve on Sg. Since i(p, a0) = 0 and i(p, a4) = 1, we
get a path of distance 3 between a0 and a4 via p, which is not possible.

Call the disc obtained by gluing D1 and D2 along b as D. Components of
Sg \ ((a4 \a0)\ b) comprise of the components of (Sg \ (a0∪a4))\ (D1∪D2) and D.
Since each component is a disc, it follows that (a4 \ a0) \ b forms a filling system of
Sg \ a0. �

5.2. Buckets

Let α be a curve on Sg which intersects µ and λ minimally. Any arc in α∩Rλ
with end points on distinct components of ∂(Rλ) is called a strand of α in Rλ. If
α is such that i(α, λ) = 1 and α ∩ µ ⊂ Rλ then α is called a standard single strand
curve.

Given an ordered set of points on µ, we now give a shorthand notation to
represent the arcs of µ between these points. Let µ be with a preferred orientation
and x1, . . . , xm≥3 be distinct points on µ. Considering µ as the embedding µ :

[0, 1] −→ Sg with µ(0) = µ(1), we say that x1, . . . , xm are along the orientation of
µ if µ−1(xi) < µ−1(xi+1) for i ∈ {1, . . . ,m − 1}. We use µ[xi,xi+1] to denote the
undirected arc of a with end points xi, xi+1 and which has no other xj ’s on it.
Since µ[xi,xi+1] is undirected, we set µ[xi,xi+1] = µ[xi+1,xi]. For i ∈ {1, . . . ,m}, let bi
be curves or essential arcs on Sg such that bi ∩ µ = xi. When the context is clear,
we will interchangeably use µ[xi,xi+1] and µ[bi,bi+1].

Select some orientation for a0 and a4. Let a0 ∩ a4 = {wi : i ∈ K} be ordered
along the orientation of a4. For i ∈ K, let ai0 be the arc of a0 ∩ Ra4 containing
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ui ui+1

vi vi+1

wi wi+1
a4

+(Ra4)

-(Ra4)

Bi
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Figure 1. Top bucket Ti and bottom bucket Bi

wi. Let the two component curves of ∂(Ra4) be ∂+(Ra4) and ∂−(Ra4) such that
a10 with the induced orientation from a0 goes from ∂+(Ra4) to ∂−(Ra4). There is a
natural orientation of ∂+(Ra4) and ∂−(Ra4) induced by the orientation of a4. For
i ∈ K, let ui = ai0 ∩ ∂+(Ra4) and vi = ai0 ∩ ∂−(Ra4). We call the rectangle in
Ra4 with boundaries a4[wi,wi+1]

, ∂+(Ra4)[ui,ui+1], a0[ui,wi]
and a0[ui+1,wi+1]

as a top
bucket and denote it by Ti. Similarly, we call the rectangle in Ra4 with boundaries
a4[wi,wi+1]

, ∂−(Ra4)[vi,vi+1], a0[wi,vi]
and a0[wi+1,vi+1]

as a bottom bucket and denote
it by Bi. Figure 1 gives a schematic of a top and a bottom bucket. We note that
each top and bottom bucket is contained in a unique component of Sg \ (a0 ∪ a4).
Let H be a top (or, bottom) bucket and let O be the component of Sg \ (a0 ∪ a4)

containing H. We then call H to be a top (or, bottom) bucket in O.

5.3. Scaling curves

Let D be a component of Sg \ (a0 ∪ a4). Let Tp, Tq be top buckets in Ra4

for some p, q ∈ K, p < q such that (Tp ∪ Tq) ⊂ D. Let γ′′ be an arc in ∪q−1i=p+1Ti

parallel to a4 with end points on ap+1
0 ∩ Tp+1 and aq0 ∩ Tq−1. Let γ′ be an arc in

the interior of D with end points (γ′′ ∩ a0) ∩ D. Let γ be the curve obtained by
concatenation of the arcs γ′ and γ′′. A schematic of γ is shown in figure 2. We call
γ a scaling curve from Tp to Tq. Since Ra4 is a cylinder, we can similarly define
a scaling curve from Tq to Tp as follows. Let γ′′1 be an arc in ∪p−1i=q+1Ti parallel to
a4 with end points on aq+1

0 ∩ Tq+1 and ap0 ∩ Tp−1. Let γ′1 be an arc in the interior
of D with end points (γ′′1 ∩ a0) ∩D. Then the curve obtained by concatenation of
the arcs γ′ and γ′′ is a scaling curve from Tq to Tp. By replacing top buckets with
their bottom buckets counterpart, we can define scaling curve from Bp to Bq and
Bq to Bp.
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Tp Tq
a4

�'

+(Ra4)

-(Ra4)

a0

�''

Figure 2. A schematic of the scaling curve γ from Tp to Tq. The
dashed arc is a schematic of γ′.

Lemma 3. Scaling curves are not null-homotopic.

Proof. We prove the lemma when γ is a scaling curve from a top bucket Tp
to Tq, p < q and (Tp ∪ Tq) ⊂ D for some component D of Sg \ (a0 ∪ a4). A
similar proof follows if γ is a scaling curve from a bottom bucket Bp to Bq, p < q

by replacing Tp, Tq with Bp, Bq, respectively, in the proof below. Similar proofs
work for scaling curves from Tq to Tp and Bq to Bp. We show that γ is not null-
homotopic by considering a minimal representative of γ along with a0 and showing
that this representative has non-zero intersections with a0. We obtain this minimal
representative of γ and a0 by removing bigons in iterations.

Suppose if possible that γ and a0 are not in minimal position. Since there exists
an isotopic copy of γ such that γ′′ overlaps with a4[wp+1,wq−1]

, if γ and a0 are not
in minimal position then a bigon is formed by γ′ and a subarc of a0. This subarc
of a0 is a component of a0 \ a4 because otherwise, if there is a point of a0 ∩ a4 on
the boundary of this bigon then as γ ∩ a4 = φ we get a bigon between a0 and a4
which contradicts the minimality of a0, a4. The closed component of a0 \ a4 that
contains this subarc also contains the arcs Tp ∩ a0[up+1,wp+1]

and Tq ∩ a0[uq−1,wq−1]
.

Thus, (Tp+1 ∪ Tq−1) ⊂ D1 for some component D1 of Sg \ (a0 ∪ a4). We remove
this bigon between γ and a0 to obtain an isotopic copy of γ. This isotopic copy of
γ is in turn a scaling curve from Tp+1 to Tq−1. By abuse of notation, we denote
this isotopic copy as γ.

If we have that γ is not in minimal position with a0, then by similar argu-
ments as in the previous paragraph, Tp+1 ∩ a0[up+2,wp+2]

and Tq−1 ∩ a0[uq−2,wq−2]

are contained in the same closed component of a0 \ a4. Thus, we have that D1 is
a rectangle. As previously, we remove this bigon between γ and a0 and consider
denote the new isotopic copy which is also a scaling curve from Tp+2 to Tq−2 by γ.
Further, we have that (Tp+2∪Tq−2) ⊂ D2 for some component D2 of Sg \ (a0∪a4).
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Continuing in a similar iterative manner as in the above paragraphs, if γ and
a0 are not in minimal intersection position, then we claim that there is a positive
integer l with l < d q−p2 e − 1 such that

(1) Tp+l ∪ Tq−l is contained in the one component Dl of Sg \ (a0 ∪ a4)

(2) Tp+l ∩ a4 and Tq−l ∩ a4 are separated by a single edge corresponding to
a0 in Dl

The fact that there exists l with l ≤ d q−p2 e − 1 is immediate as there are at most
d q−p2 e pairs of buckets of the form Tp+i and Tq−i between Tp and Tq in Ra4 . We
first show that if we assume l = d q−p2 e − 1 along with hypothesis (1) and (2) then
we arrive at the following contradictions. If q−p is odd then we have that Tp+l and
Tq−l are adjacent top buckets. But if Tp+l and Tq−l are adjacent top buckets then
a0 has a self intersection, which is absurd. If q − p is even then p + l + 2 = q − l.
But then the a0∩Dl arc containing the end points wp+l+1 and wq−l encloses a disc
with a4[wp+l+1,wq−l]

, thus giving a bigon between a0 and a4. This contradicts that
a0 and a4 are in minimal position.

We thus have that the scaling curve from Tp+l to Tq−l intersects a0 minimally
and is isotopic to the given γ.

�

As in the proof of lemma 3, whenever we consider a scaling curve we will work
with an isotopic copy of it which is in minimal position with a0, a4 and Ta4(a0).

Corollary 2. Scaling curves fill with a0.

Proof. From the construction of a scaling curve, γ, γ ∩ a4 = φ and hence
d(γ, a0) ≥ 3. Thus, a0 and γ fill Sg. �

Remark 3. If a0 and a4 intersect imin(g, 4) number of times then any scaling
curve are at a distance 3 from a0.

5.4. Properties of buckets

The following lemmas explain a few observations regarding the buckets in Ra4
and the components of Sg \ (a0 ∪ a4) that contain them.

From corollary 2 and the fact imin(g, 3) ≥ 4 ([3]), we have the following corol-
lary regarding the placement in Ra4 of the top buckets which are subset of the same
disc of Sg \ (a0∪a4). A similar version of corollary 3 holds true for bottom buckets.

Corollary 3. Let D be a component of Sg \(a0∪a4) and Tp, Tq be distinct top
buckets in Ra4 for some p, q ∈ K, p < q such that (Tp ∪Tq) ⊂ D. Then |q− p| ≥ 4.

Lemma 4. For any i ∈ K, Ti and Bi can’t be subsets of the same component
of Sg \ (a0 ∪ a4).
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Proof. This follows directly from the proof of lemma 2 by considering b =

a4[i,i+1]
. �

Choice of δ : Considering Ta4(a0) to be in special position w.r.t. a0 and a4,
there exists a representative of a0 such that the possible schematics of the strands of
Ta4(a0) in Ra4 are as in figure 3. The details to the choice of such a representative
of a0 can be found in the proof of 5. Any path between a0 and Ta4(a0) is of the
form Ta4(a0), δ, c, Θ, a0 where δ ∈ B1(Ta4(a0)), c ∈ B1(δ) and Θ is a non-trivial
path. We now give an algorithm to select a representative of δ such that for each
strand of δ in Ra4 there exists i ∈ K such that the end points of the strand lies on
∂+(Ra4)[ui,ui+1] and ∂−(Ra4)[vi,vi+1]. Applying Ta4 to a geodesic between a0 and
a4, we get that d(a4, Ta4(a0)) = 4. Since δ ∈ B1(Ta4(a0)), we have that d(δ, a4) ≥ 3.
From [3], we have that imin(g, 3) ≥ 4. Thus i(δ, a4) ≥ 4, i.e. there are at least 4

strands of δ in Ra4 . Consider a representative of δ which is in minimal position with
a0, a4, Ta4(a0), ∂+(Ra4) and ∂−(Ra4). We can choose a representative of δ such
that δ∩a0 ⊂ Ra4 by performing the isotopy I2 described in the step 1 of theorem 6.
An intuitive picture of this isotopy is to finger push the points in δ∩a0 which don’t
lie in Ra4 , along a0, into Ra4 . This “finger pushing” doesn’t disturb the minimal
position of δ and Ta4(a0). The strands of δ in Ra4 attained after performing the
above isotopies can be one of the four possible schematics as in figure 3. If a strand
of δ in Ra4 , say δ′, is as in figure 3a or 3b, we can perform an isotopy of δ such
that the isotopic image of δ′ is as in figure 3c or 3d and the isotopy doesn’t disturb
the other strands of δ. This isotopy of δ is defined as I3 in the step 1 of theorem 6.
The isotopic copy thus obtained is said to be “δ in a rectified position".

Let δ1 be the point on ∂+(Ra4) such that δ1 = δ ∩ ∂+(Ra4)[u1,u2] and that
one of the arcs ∂+(Ra4) \ {u1 ∪ δ1} doesn’t contain any points of δ ∩ ∂+(Ra4). If
m = i(a4, δ), let δ ∩ ∂+(Ra4) = {δi : 1 ≤ i ≤ m} such that the δ1, δ2, . . . , δm are
along the orientation of ∂+(Ra4). Let the strand of δ containing the point δi be δi.

Let δr, δs be any two distinct strands of δ in Ra4 such that δr and δs start in
distinct top buckets, say Tr and Ts, and that there exists a component of ∂+(Ra4)\
(δr ∪ δs) that doesn’t contain any points of ∂+(Ra4) ∩ δ other than ∂+(Ra4) ∩ δr

and ∂+(Ra4) ∩ δs. We call the rectangular component of Ra4 \ (δr ∪ δs) which
doesn’t contain any other strand of δ as a δ-track in Ra4 and denote it by δr,s.
The boundary of δr,s comprises of the arcs δr, δs, ∂+(Ra4)[δr,δs] and ∂−(Ra4)[δr,δs].
Further, assuming r < s, we call the set

⋃s
i=r(Ti ∪Bi) as inside of δr,s.

Lemma 5. Let O be a 2n-gon disc of Sg \ (a0 ∪ a4) with n ≥ 4. For any delta-
track in Ra4 , δr,s, there exists at-least one top bucket or, bottom bucket in O that
is not in the inside of δr,s.
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Figure 3. The possible starting and ending points of strands of δ in Ra4

Proof. Let us suppose on the contrary that there exists a δ-track δr,s such
that all the top and bottom buckets in O are inside δr,s. Without loss of generality,
assume the top and bottom buckets containing the end points of δr are Tr and
Br, respectively. Similarly, for δs the top and bottom buckets are Ts and Bs,
respectively. If every bucket in O are of the form Ti or, Bi for r < i < s then, we
get a scaling curve γ such that δ, γ, a4 is a path. This contradicts d(δ, a4) ≥ 4.

Also, since every bucket of O is inside δr,s, any arc of δ ∩ O are either an arc
that covers a4[i,i+1]

for r < i < s or, an arc, say δ′, with end points δr ∩ a4 and
δs ∩ a4. It follows along with lemma 4 that either T r, T s or, T r, Bs or, Br, T s or,
Br, Bs are buckets of O. We show that all these possibilities, if they exist, lead to
a contradiction. The following is a combinatorial proof and we give it for the case
O is an octagon. As n increases, the proof remains intact with only the possibility
of certain cases being redundant.

If T r, T s are buckets in O, figure 4 shows the distinct possible δ′. If T r, Bs

are buckets in O, figure 5 shows the distinct possible δ′. If Br, Bs are buckets in
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Figure 4. Both the dotted line and the dashed line are possibili-
ties for δ′ if Tr and Ts are as in the schematic.
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O, figure 6 shows the distinct possible δ′. In the possible cases of figure 4, 5 and
6a, by the pigeon hole principle, either component of O \ δ′ contains either two top
or, bottom buckets. Thus, if these cases occur, we can construct a scaling curve γ
such that δ, γ, a4 is a path, which is absurd. For figure 6b, if both the components
of O \ δ′ contains a top bucket, because Sg is an orientable surface, we will be able
to find a non-trivial curve γ with properties as in the above cases. Here, γ ∩O lies
in the component of O containing the vertices wr+1 and ws.

If Br, T s are buckets in O, the arguments are similar to the case of T r and Bs

being buckets of O.
�

5.5. Almost filling arcs

Suppose we have a filling system of arcs of Sg \ a0 and there is another set of
arcs on Sg \ a0 that covers all the arcs in the former filling system of arcs except

TH-3275_176123007



5.5. ALMOST FILLING ARCS 45

a0

a0a0

a0

a4 a4

a4 a4

Br
'

Bs

(a)

a0

a0a0

a0

a4 a4

a4 a4

Br

'

Bs

(b)

Figure 6

a0

a0
a0

a0

a4 a4

a4

a4

a4

a0 

J3
J2

J1

I

b z

z'

Figure 7. A schematic of I with (z, z′) almost covering b.

for one. In the following we explore a sufficient condition on the latter system of
arcs which ensures that it forms a filling system of arcs. To prove this condition we
take the aid of the fact that a0 and a4 fill Sg.

Let I be some non-rectangular component of Sg \ (a0 ∪a4) and aJ10 , aJ20 be two
distinct edges of I, where J1, J2 ∈ K. Consider an arc, b, in I with end points on
aJ10 and aJ20 . Let I be one of the two components of I \ J such that I contains an
edge aJ0 for some J ∈ K. By our assumption, there exists an edge, aJ30 , in I such
that aJ20 ∩ I and aJ30 are adjacent in the polygon I. Consider arcs, z and z′, in I
such that the end points of z are aJ10 ∩ I, a

J3
0 and the endpoints of z′ are aJ20 , aJ30 .

Clearly, z′ covers the a4 edge in I adjacent to aJ20 ∩ I and aJ30 . We call such a pair
of arcs (z, z′) to almost cover b. Figure 7 gives a schematic of (z, z′).

Lemma 6. Let a0 and a4 be curves on Sg with d(a0, a4) = 4. Let κ be another
curve on Sg such that a0 and κ fill Sg. Let Γ be a set of essential arcs on Sg \ a0.
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If Γ consists of arcs that covers all but one arc of κ \ a0 and almost covers the
remaining arc of κ \ a0, then Γ forms a filling system of arcs of Sg \ a0.

Proof. Let g, g′ ∈ Γ and x be the component of κ\a0 such that (g, g′) almost
cover x. Let {gj}j∈J ⊂ Γ be the arcs that cover the components of (κ \ a0) \x. Let
I be the component of Sg \ (a0 ∪ a4) that contains x.

Starting with the components of (Sg \a0)\a4, we can obtain the components of
(Sg\a0)\κ by gluing the components of (Sg\a0)\a4 along the components of a4\a0
and cutting along the components of κ \ a0. In the components (Sg \ (a0 ∪ a4)) \ I,
the action of cutting along the components of κ \ a0 coincides with the action of
cutting along {gj}j∈J .

Let I and I ′ be the two components of I \ x such that (g ∪ g′) ⊂ I. In I,
the action of gluing along x is such that it separates the a4-edges of I into two
sets i.e. (a4 \ a0) ∩ I and (a4 \ a0) ∩ I ′. Let G1, G2 and G3 be the components
of I \ (g ∪ g′). From the schematic in figure 7, we can see that the components
of I \ (g ∪ g′) can be named such that I ′ ⊂ G1, G2 ⊂ I and G3 ⊂ I. Since, the
components of (Sg \ a0) \ (κ \ x) and the components of (Sg \ a0) \ ∪j∈Jgj are the
same, we have that the components of (Sg \(a0 \∪j∈Jgj)\(g∪g′) will be discs if the
action of cutting along g∪g′ doesn’t put an arc from (a4 \a0)∩ I and another from
(a4 \ a0)∩ I ′ in the same Gi. Such a phenomenon never occurs by our definition of
almost filling.

�
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CHAPTER 6

CRITERIA FOR d(a0, ta4(a0)) ≥ 5

We have that a0, a1, a2, a3 = Ta4(a3), Ta4(a2), Ta4(a1), Ta4(a0) is a path of
length 6 in C(Sg). Existence of a path of length 6 between Ta4(a0), a0 and theorem
5 gives that

4 ≤ d(a0, Ta4(a0)) ≤ 6.

Thus, geodesics between a0 and Ta4(a0) in C(Sg) can be of the form z0 = Ta4(a0), z1 =

δ, z2 = c, . . . , zN = a0 for some N ∈ {4, 5, 6} and c ∈ B1(δ). We have that
d(a0, Ta4(a0)) ≥ 5 if and only if d(a0, c) ≥ 3 for all possible c ∈ B2(Ta4(a0))∩B1(δ).
In this chapter we identify the characteristics of δ and c which results in d(c, a0) ≥ 3.

The notations and representatives for a0, a4, Ta4(a0), δ ∈ B1(Ta4(a0)), Ra0
and Ra4 in this chapter are the same as the ones made in the previous chapter.

Let k ∈ N. The path a0, a1, a2, a3 = T ka4(a3), T ka4(a2), T ka4(a1), T ka4(a0) in C(Sg)
gives that d(a0, T

k
a4(a0)) ≤ 6. In [4], the authors showed that d(a0, T

B
TB
a3

(a0)
(a0)) ≥ 6

for some large enough constant B. We replicate their arguments to show that
d(a0, T

k
a4(a0)) ≥ 6, ∀k ≥ K for some large enough constant K. We will be us-

ing the notations as introduced in section 2.7. For any curve γ, we have that
dγ(α, TNγ (α)) ≥ N − 2. Choose a large enough constant K such that

da4(a0, T
K
a4 (a0)) ≥ K − 2 > M.

By theorem 2, any geodesic, g, between a0 and TKa4 (a0) has to pass through the one
neighbourhood of a4. Suppose for g, the node p lies in the one neighbourhood of

47
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(a0)) ≥ 5

a4. Then,

d(a0, T
K
a4 (a0)) = d(a0, p) + d(p, TKa4 (a0))

≥ (d(a0, a4)− 1) + (d(TKa4 (a4), TKa4 (a0))− 1)

= 6.

The above arguments follows for all k ≥ K and thus d(a0, T
k
a4(a0)) = 6, ∀k ≥ K.

6.1. Representative of c

Since c ∈ B1(δ), d(δ, a4) ≥ 3 implies that c ∩ a4 6= φ. Thus, there is at least
one strand of c in Ra4 . We now perform an isotopy of c so that c is in a favourable
position with respect to a0, a4, ∂(Ra4) on Sg. The idea behind this isotopy is to get
a representative of c such that in Ra4 , the strands of c resemble the “spiral pattern”
of the strands of Ta4(a0) and δ. Consider an isotopic copy of c such that c is in
minimal position with ∂+(Ra4), ∂−(Ra4), a0, a4 and δ. Consider any strand, c′, of
c in Ra4 . Let c+ = c′ ∩ ∂+(Ra4) and c− = c′ ∩ ∂−(Ra4). Let i0 ∈ K = {1, . . . , k}
such that c+ lies on the boundary of the top bucket Ti0 . There exists 0 ≤ l ≤ k− 1

such that c− lies on the boundary of the bottom bucket Bi0+l. Note that since in
any top bucket Ti, there is an arc of delta with end points on ai0 and ai+1

0 , if l = 0

then c′ ∩ ai0+1
0 6= φ. There exists i1, i2 ∈ K such that c+ lies in ∂+(Ra4)[δi1 ,δi2 ].

Since c′ ∩ (δi1 ∪ δi2) = φ, we have i1 ≤ i0 + l ≤ i2. Consider the arcs c1, c2 and c3
in the annulus Ra4 as follows :

• c1 starts at c+ passing through Ti0 , Ti0+1 . . . , Ti1−1 and ends in some
interior point on ai10 ∩ Ti1−1

• c2 is an arc parallel to a4 which starts at c1 ∩ ai10 , passes through Ti1 ,
Ti1+1 . . . , Ti0+l−1 and ends in some interior point on ai0+l0 ∩ Ti0+l

• c3 is an arc in the rectangle Ti0+l ∪ Bi0+l with end points c2 ∩ ai0+l0 and
c−

Let c′′ be the arc obtained by concatenating c1, c2 and c3. Note that c′′

intersects a4 only once. Since both c′ and c′′ are arcs in the rectangle with edges δi1 ,
δi2 , ∂+(Ra4)[δi1 ,δi2 ] and ∂−(Ra4)[δi1 ,δi2 ] such that both c′ and c′′ have end points
c+ and c−, there is a end point fixing isotopy, I, of arcs in the rectangle from c′ to
c′′. The isotopy I can be extended to an isotopy of c to (c \ c′) ∪ c′′ such that the
action on c\c′ remains identity. By abuse of notation, we denote I(c′) i.e. c′′ by c′.
Since the strand of c, c′, is arbitrary and I is identity on c \ c′, we can apply I to
every strand of c to obtain a representative of c which remains in minimal position
with a0, a4, Ta4(a0) and δ. We will always consider such a representative of c.
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Suppose i(c, a4) = k0. Let c1, . . . , ck0 be the strands of c. Let the end points
of ci be in the top bucket Tdi and the bottom bucket Bdi−li . We call the set
Ci =

⋃d
j=di−li(Tj ∪Bj) as the inside of ci. We define

⋂k0
j=1(Cj) as the inside of c.

6.2. Values of d(c, a0)

We now look into the possible values for d(c, a0) by considering the following
two cases depending on the number of strands of c :

Case i : there is a single strand of c in Ra4
Case ii : there are multiple strands of c in Ra4
Case i : Suppose there exists a single strand, c′, of c in Ra4 . Let c′∩∂+(Ra4) lie on
∂+(Ra4)[δp,δq ] where 1 ≤ p < q ≤ m. We first consider the case when δp ∩ ∂+(Ra4)

and δq ∩ ∂+(Ra4) lie in the same top bucket then c′ ∩ ∂+(Ra4) and c′ ∩ ∂−(Ra4) lie
in Te and Be, respectively, for some e ∈ K = {1, . . . , k}. By lemma 2 we have that
c′ and a0 fills.

We now consider the case that δp ∩ ∂+(Ra4) and δq ∩ ∂+(Ra4) lie in distinct
top buckets. Without loss of generality in the arguments below, we can assume
that δp ∩ ∂+(Ra4) and δq ∩ ∂+(Ra4) lie in Tp and Tq, respectively. Let the end
points of c′ be in the top bucket D = Td and the bottom bucket T = Bd−l where
r ≤ d − l ≤ d ≤ s. The set

⋃d
i=d−l(Ti ∪ Bi) forms the inside of c. For a c with a

single strand c′, if c ∩ a0 = c′ ∩ a0, we recall from section ?? that such a c is said
to be a standard single strand curve. We first show that any c with i(c, a4) = 1 is
a standard single strand curve.

We recall that if c is such that i(c, a4) = 1 and c∩a0 ⊂ Ra4 then c is a standard
single strand curve. If T is the disc which contains T , then there exists another top
or, bottom bucket T ∗ which contains an endpoint of the arc of c∩T containing the
subarc c′ ∩T . If c is a standard single strand curve then T ∗ = D. If T ∗ 6= D, let D
be the component of Sg \ (a0 ∪ a4) containing D. Let D∗ be the bucket in D where
the other end of the arc in (c \ a0) ∩ D containing c′ ∩D lies.

Lemma 7. Let T ∗ 6= D. If either T ∗ or, D∗ are inside c then there exists a
representative of c that is a standard single strand curve.

Proof. Without loss of generality, suppose that D∗ is inside c. We show that
D∗ can’t be a top bucket. Similar arguments ensure that whenever T ∗ is inside
c, it can’t be a bottom bucket. Assume on the contrary that D∗ is a top bucket.
Then the arc of c in D∗ is either as in figure 1a or, 1b. In either case, consider γ
as shown in figure 1. We observe that in figure 1, the arc (γ \ a0) ∩ D from D∗ to
D is parallel to the arc (c \ a0) ∩ D from D∗ to D. By corollary 2, γ is essential.
Since, γ is inside c it implies that γ is inside δp,q. Thus, γ ∩ δ = φ. Further, by the
construction of γ, we have that δ, γ, a4 is a path. But this contradicts d(δ, a4) ≥ 3.
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Figure 1

We give the isotopy for the case when T ∗ is inside c. Let cD and cT∗ be any
two points on the interior of the arcs c ∩D and c ∩ T ∗, respectively. Let c̃ be the
component of c \ {cD ∪ cT∗} that contains the point c ∩ a4. Let ζ1 be the closed
arc c \ c̃. Recall that D = Ti0 . If T ∗ = Ti0−s, let ζ2 be the arc passing through
Ti0−s, Ti0−s+1, . . . , Ti0 parallel to a4 and having end points cD and cT∗ . Let ζ be
the curve on Sg formed from the concatenation of ζ1 and ζ2.

We now show that ζ has to be a trivial curve on Sg. By construction, we have
ζ ∩ a4 = φ. Since ζ1 is an arc of c, ζ1 ∩ δ = φ. Since T ∗ is inside c and hence, inside
δp,q, it follows that ζ2 ∩ δ = φ. Thus, ζ ∩ δ = φ. If ζ is non-trivial it contradicts
the fact that d(δ, a4) ≥ 3.

Since ζ is trivial, we have that ζ1 is isotopic to ζ2 by an isotopy, say L′. We
perform an isotopy, L, of c such that L(c̃) = c̃ and L(c \ c̃) = L′(ζ1) = ζ2. Thus
L(c) is a standard single strand curve on Sg whose strand has its end points in T
and T ∗.

A similar proof follows for the case if D∗ is inside c and T ∗ is outside c by
reversing the roles of T ∗ with D∗ and D with T .

�

Lemma 8. If c is a standard single strand curve then, there exists a represen-
tative of c such that the end points of its strand lies in a top and a bottom bucket
of a non-rectangular component of Sg \ (a0 ∪ a4).

Proof. Let us suppose T is a rectangle. From the notations defined in the
previous section, it follows that the four vertices of T are wd, wd+1, wd−l and
wd−l+1. Since c has a single strand, we have that i(c, a4) = 1. As c and a0 are in
minimal position, the two parallel edges corresponding to the a0-arcs in T are as
follows : one edge is between wd−l and wd and the other edge is between wd−l+1

and wd+1. A schematic of the bigon formed between c snd a0 if the a0-edges in
T are otherwise is shown in figure 3. We note that, since δ ∩ c = φ, we have that
c ∩ ∂+(Ra4)[d,d+1] = φ. This means that D = Td and Tq don’t coincide.

We first show that there exists j such that d ≤ j ≤ q and Tj is a top bucket of
some non-rectangular component of Sg \ (a0 ∪a4). On the contrary assume that Tj
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a4
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c

wd-l wd-l+1

wdwd+1

Figure 3. The possible bigon formed if the a4 edges in T aren’t
parallel.

for every d ≤ j ≤ q is a top bucket of some rectangular disc. Let Tq be contained
in the rectangular disc R and let the component of δq ∩ R with end points on
a0 and ∂+(Ra4) be δq∗. Then the a4-edges in R are a4[wq,wq+1]

and a4[wq−l,wq−l+1]
.

The union of the rectangular components of Sg \ (a0 ∪ a4) containing Tj for every
d ≤ j ≤ q is again a rectangle, say R. In particular, T and R are contained in R.
Since the a4 edges of T are in oriented parallely, it gives that the a4 edges of R
are also oriented parallely. In particular, the a4 edges of R are oriented parallely.
As a result Bq−l ⊂ R. Thus the component of δ ∩ R that contains δq∗ has an end
point on a4[wq−l,wq−l+1]

, say x. A schematic of the above description is as in figure
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Figure 4. A schematic of c

T=Bd-l

a4

c

Td0-l

D=Td Td0a0 a0
+(Ra4)

-(Ra4)

Figure 5. The dotted line is a schematic of L(c)

4. Since δq \ a0 covers every arc of a4 \ a0 except a4[wq,wq+1]
, there is an arc of δq

parallel to a4[wd−l,wq−l+1]
in Ra4 . Since there are no points of δ∩a0 on aq−l0 between

δq ∩ aq−l0 and wq−l, there is no possibility of x joining to any arc of δ \ a0. Thus,
we have that there is a Tj for some d ≤ j ≤ q such that Tj is contained in some
non-rectangular component of Sg \ (a0 ∪ a4).

Consider the non-rectangular disc H such that there is a top bucket Td0 of H
where d < d0 ≤ q and Tj for d ≤ j < d0 are top buckets of rectangular discs. Since
Tj are rectangles for d ≤ j < d0, we have that Bd−l+i for 0 ≤ i < d0−d are bottom
buckets of rectangles. Further, for 0 ≤ i < d0 − d, Td+i and Bd−l+i are buckets of
the same rectangular disc. Consider an isotopy, L, of c that moves the point c∩ a4
along the increasing direction of a4 from a4[wd−l,wd−l+1]

to a4[wd0−l,wd0−l+1]
such that

L(c) is in minimal position with a0 and a4. A schematic of L is shown in figure 5.
Since Td0 is in the same δ-track as D and T , L(c) remains to be in minimal position
with δ. �

As a consequence of lemma 8, we can now assume that the strand of c has its
end points in a top and bottom buckets, At, Ab of a non-rectangular disc, say H.
If H is a 2n-gon with n ≥ 4, then by lemma 5 there exists either a top or, bottom
bucket A of H outside the delta track δp,q. We will assume that A is a top bucket.
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When A is a bottom bucket, similar conclusions can be made about c and a0 by
interchanging the roles of At and Ab in the following arguments.

Let γ be a scaling curve from At to A. Let γ′ be the arc in γ∩H which contains
(γ ∩ A) ∪ (γ ∩ At). By corollary 2, we have that γ and a0 fill. The construction
of γ gives that every arc in (γ \ a0) \ γ′ is covered by some arc in c \ a0. Let Λ1

and Λ2 be the two polygonal components of Sg \ (a0 ∪ γ) containing the two edges
corresponding to γ′. Let Λ be the component formed by gluing Λ1 and Λ2 along
γ′. If Λ1 and Λ2 are distinct, then Λ is a disc. It then follows that the components
of (Sg \ a0) \ c correspond to the components of {(Sg \ a0) \ (γ \ γ′)} ∪ Λ. Thus,
c and a0 fill whenever Λ1 6= Λ2. If Λ1 = Λ2, then Λ is an annulus. Note that by
construction of γ there exists arcs of a4 \ a0 that covers every arc of (γ \ a0) \ γ′.
Consider a representative of a4 such that for every arc of (γ \a0)\γ′, the respective
arc of a4 \ a0 which covers it also overlaps it. Let P be the central curve of the
annulus Λ. We have that P will be an essential curve on Sg. If not, a0 ceases to be
connected. Let the two boundary components of Λ be ∂+(Λ) and ∂−(Λ).

Let Y be a component of Sg \ (a0∪a4) such that one of the arcs in (a4 \a0)∩Y ,
say y, has one of its end points on ∂+(Λ) and another on ∂−(Λ). We have that
(a0 ∩ a4) ∩ Y ⊂ ∂(Λ). Since γ ∩ a4 = φ, the arcs in (a4 \ a0) ∩ Y are either in the
interior of Λ or, in ∂(Λ). Thus, Y is a polygon in the annulus Λ such that its edge
y is in the interior of Λ. It follows that there is another arc in (a4 \ a0) ∩ Y with
its end points on ∂+(Λ) and ∂−(Λ).

Since P is a curve on Sg with P ∩ a0 = φ and a0 and a4 fill Sg, there must
exist an arc y1 in a4 \ a0 such that y1 ∩ P 6= φ. As P is the core curve of Λ,
the end points of y1 must lie on ∂+(Λ) and ∂−(Λ). Let Y1 be one of the discs
of Sg \ (a0 ∪ a4) containing an edge corresponding to y1. By the argument in
the previous paragraph, there exists another arc, y2 in a4 \ a0 with end points on
∂+(Λ) and ∂−(Λ). Let Y2, if exists, be the other disc which contains the other edge
corresponding to y2. We apply this process inductively to obtain all the discs Y1,
Y2, . . . , Yl with edges y1, y2, . . . , yl having end points on distinct components of
∂(Λ). If any yi is not inside c we have that an arc of c \a0 covers this particular yi.
Thus, c and a0 fill Sg. If all y′is lie inside c, then Ta4(a0), δ, c, P, a0 is a geodesic
of distance 4. If such a geodesic of length 4 exists with l = 4, a schematic of Ra4
and P ∩Ra4 is as in figure 6 upto renaming of the components Yi for 1 ≤ i ≤ 4.

If i(c, a4) = 1 but c is not a standard single strand curve, by lemma 7 neither
T ∗ nor D∗ are inside c. Then T ∗ can be either a top or, bottom bucket. If T ∗

is a bottom bucket, consider the scaling curve γ as in 7a and let the arc in γ \ a0
between T and T ∗ be γ′. It can be seen from 7a that by virtue of the choice of
γ, c \ a0 contains a subset of arcs that cover all the arcs in (γ \ a0) \ γ′. Since
T ∗ doesn’t lie inside c, there exists a pair of arcs in c \ a0 that almost covers γ′.
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Figure 6. A schematic of P (dotted lines) if Y1, . . . , Y4 occur as
above in Ra4 .
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This pair of arcs comprises of the following two arcs of c \ a0 : firstly the arc that
contains the subarc T ∗ ∩ c and secondly, the arc that lies in the top bucket which
has a common component of a4 \ a0 with T ∗. This second arc of c \ a0 covers the
edge corresponding to a4 ∩ T ∗. Thus by lemma 6, c \ a0 forms a filling system of
arcs on Sg \ a0. If D∗ is a top bucket, we construct γ as in figure 7b and a similar
argument as above gives that c and a0 fill Sg. If T ∗ is a top bucket and D∗ is a
bottom bucket then construct γ as in figure 8. Similar arguments as above along
with lemma 6 concludes that c and a0 fill Sg.
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δ
c''
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Figure 9. A schematic of c′ and c′′ in Ra4 when they do not cover
every arc of a4 \ a0.

Case ii : Suppose there exists at least two distinct strands, c′ and c′′, of c in Ra4 .
Assume that c′∩∂+(Ra4) lie on ∂+(Ra4)[δp,δq ] and c′′∩∂+(Ra4) lie on ∂+(Ra4)[δr,δs]

where 1 ≤ r < s ≤ m. If either δp ∩ ∂+(Ra4) and δq ∩ ∂+(Ra4) lie in the same top
bucket or, δr ∩∂+(Ra4) and δs∩∂+(Ra4) lie in the same top bucket then by lemma
2, c and a0 fills Sg. The argument is similar to that of case i when the end points
of the strand lie in Te and Be for some e ∈ K = {1, . . . , k}. We can thus assume
that p ≤ r.

Suppose p < r. If q < r, then for every j ∈ K, there exists an arc of (c′∪c′′)\a0
that covers aj4. Thus, c \ a0 forms a filling system of arcs in Sg \ a0. If q = r, then
figure 9 gives the only instance when there exists a J ∈ K such that aJ4 isn’t covered
by an arc of (c′ ∪ c′′) \ a0. It follows from lemma 2 that c \ a0 forms a filling system
of arcs in Sg \ a0.

Suppose p = r. We rename c′ to be the strand of c such that one of the
components of ∂+(Ra4) \ {δp, c′} doesn’t contain any points of ∂+(Ra4) ∩ c in its
interior. Let z be the component of c \ Ra4 containing c′ ∩ ∂−(Ra4). Rename c′′

to be the strand of c such that z ∩ c′′ 6= φ. We claim that z ∩ c′′ lies on ∂+(Ra4).
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Let z′ be the component of ∂−(Ra4) \ z such that no points of ∂−(Ra4) ∩ c lies
in its interior. On the contrary, if z ∩ c′′ lies on ∂−(Ra4) then we get that z is
isotopic to z′. This follows because the curve obtained by concatenating z and z′ is
a curve disjoint from δ and a4. Since d(δ, a4) ≥ 3, this curve has to be non-essential.
Therefore, we must have that z ∩ c′′ lies on ∂+(Ra4). Let z̃ be the component of
c \Ra4 containing c′ ∩ ∂+(Ra4). A similar argument ensures that the end point of
z̃ lies in ∂−(Ra4). Thus, following the naming convention of D, D∗, T and T ∗ for
the strand c′ as in case i, we can consider a scaling curve as in figure 8. Similar
arguments as in case i gives that c and a0 fills Sg.

6.3. Conclusion

If d(a0, Ta4(a0)) = 4, then there exists δ ∈ B1(Ta4(a0)) and corresponding to
δ there exists c ∈ B1(δ) ∩ B2(Ta4(a0)) such that a0, p, c, δ, Ta4(a0) is a geodesic.
We consider the representatives of δ and c to be the ones as described in section
5.4 and section 6.1, respectively. Then a schematic of a possible p in Ra4 is as in
figure 6. We now describe an equivalent condition for the existence of p in the form
of buckets. Given such a curve p, consider the collection Yp of all top and bottom
buckets in Ra4 containing p. Since p ∩ a0 = φ, if Ti ∈ Yp for some i ∈ {1, . . . , k}
then Bi ∈ Yp. Conversely, we define a collection of pairs of top and bottom bucket
{(Ti, Bi)}i∈I for some I ⊂ K = {1, . . . , k} where for every Ti there exists unique
j ∈ I and j 6= i such that Ti ∪ Tj ⊂ Y (or, Ti ∪Bj ⊂ Y ) for some component Y of
Sg \ (a0 ∪ a4) as a stack of buckets. We note that given a stack of buckets we can
always construct a curve disjoint from a0. The pattern in figure 6 can be described
as the inside of c containing a stack of buckets. For any given c ∈ B2(Ta4(a0)) if
the inside of c contains a stack of buckets, we say c has the stacking property. Thus,
we conclude that :

Lemma 9. d(a0, Ta4(a0)) = 4 if and only if there exists c ∈ B2(Ta4(a0)) such
that c has the stacking property.

From our analysis of curves c ∈ B2(Ta4(a0)) ∩ B1(δ) in section 6.2, we have
that if c is not a standard single strand curve then c and a0 always fill. Thus we
have the following theorem :

Theorem 9. Let a0 and a4 be curves on Sg such that d(a0, a4) = 4 and the
components of Sg \(a0∪a4) doesn’t contain any hexagons. Then, d(a0, Ta4(a0)) ≥ 5

if and only if there doesn’t exist any standard single strand curve c ∈ B2(Ta4(a0))

having the stacking property.

An advantage of theorem 9 is that it reduces the number of possible vertices
through which a path of length 4 between a0 and Ta4(a0) if it exists can pass.
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CHAPTER 7

A PAIR OF DISTANCE 5 CURVES ON C(S2)

The work in this chapter is part of the preprint [16].
Let a0 and a4 be curves on S2 as in figure 1. These curves are at a distance 4

in C(S2) and are taken from [5]. In this section we show that d(a0, Ta4(a0)) = 5 by
giving a geodesic between them. Let b0 = a0, b1, b2, b3 be curves on S2 as in figure
2 and b4 be as in figure 4. The juxtaposition of the curves in figure 2 and 4 shows
that b0, b1, b2, b3, b4 form a path of length 4 in C(S2).

Since a0 and a4 fill S2, we can give a schematic of S2 by giving the components
of S2 \ (a0 ∪ a4) as polygons whose vertices are the points of a0 ∩ a4 marked as in
figure 1 and edges correspond to arcs of a0 \ a4 or, a4 \ a0. Figure 6a - 10 represent
all polygons but the rectangle with vertices 10, 9, 4, 5 of S \ (a0 ∪ a4). We give
a juxtaposition of the curves b4 and Ta4(a0) in minimal position on S2 by giving
their arcs on the polygonal discs of S \ (a0 ∪ a4). Since the representatives of b4
and Ta4(a0) that we pick don’t have any arcs in the rectangle of S2 \ (a0 ∪ a4) with
vertices 10, 9, 4, 5, we exclude this rectangles from the figures. In figure 6a - 10,
the straight lines correspond to the arcs of Ta4(a0) and the dotted ones correspond
to b4. Since there is no intersection between these arcs, we conclude that b4 and
Ta4(a0) are at a distance 1 in S2.

We now show that d(a0, Ta4(a0)) > 4 by using lemma 9. Consider the curves
γ1, γ2, γ3 and γ4 as in figure 3 which are at a distance 1 from a4. If for any
i0 ∈ {1, 2, 3, 4}, T−1a4 (δ) ∩ γi0 = φ then a0, T−1a4 (δ), γi0 , a4 will form a path of
length 3, which is absurd. Thus, d(T−1a4 (δ), γi) ≥ 2 for i = 1, 2, 3, 4. Now, since
d(T−1a4 (δ), a0) = 1 and T−1a4 (δ)∩a4 6= φ, the arcs in the non-empty set T−1a4 (δ)∩Ra4
are parallel to the arcs in a0∩Ra4 . Since, T−1a4 (δ)∩γi 6= φ for every i = 1, 2, 3, 4, we
refer to figure 3 and observe that for any two possible consecutive arcs of T−1a4 (δ)∩
Ra4 there are no stack of buckets between them. We note that we can circumvent
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Figure 2

verifying the above for the set of all possible consecutive arcs of T−1a4 (δ) ∩ Ra4 by
looking at only the consecutive arcs of T−1a4 (δ)∩Ra4 that has the maximum number
of top buckets between them. Since the inside of a c is contained in some δ-track
and the strands of δ that constitute the boundary of a δ-track are Ta4-image of some
arc of T−1a4 (δ) therefore, no c has the stacking property. Thus, d(a0, Ta4(a0)) > 4.

From the above discussion, we conclude that the path in C(S2) comprising of
vertices b0 = a0, b1, b2, b3, b4, b5 = Ta4(a0) is a geodesic of length 5 in C(S2). As
an application of this example we give an upper bound on imin(2, 5) as follows :

Corollary 4. imin(2, 5) ≤ 144.
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Figure 3. Regular neighbourhood of a4 with a4 ∩ a0 marked as
in figure 1. The vertical arcs represent a0.
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