Local Geometry of Curve Graphs of Closed Surfaces

Assam 781039, India

Indian Institute of Technology Guwahati 2023

This is to certify that the thesis entitled "Local Geometry of Curve Graphs of Closed Surfaces" submitted by Ms. Kuwari Mahanta to the Indian Institute of Technology Guwahati for the award of the degree of Doctor of Philosophy is a record of the original bona fide research work carried out by her under my supervision. The results contained in this thesis have not been submitted in part or full to any other university or institute for the award of any degree or diploma.

"Questions about the metric relations of Space in the immeasurably small are thus not idle ones."
-Bernhard Riemann

Let S_{g} denote a closed, orientable surface of genus $g \geq 2$. Let $\mathcal{C}\left(S_{g}\right)$ be the associated curve graph and d be the associated path metric. Let α and β be curves on S_{g} and $T_{\beta}(\alpha)$ be the Dehn twist of α about β.

If $d(\alpha, \beta)=3$, we show that $d\left(\alpha, T_{\beta}(\alpha)\right)=4$. This produces many tractable examples of distance 4 vertices in $\mathcal{C}\left(S_{q}\right)$. As an application we show that the minimum intersection number of any two curves at a distance 4 on S_{g} is at most $(2 g-1)^{2}$.

Let $d(\alpha, \beta)=4$. We fix the vertex α and apply T_{β} to it in an attempt to create pairs of curves at a distance 5 apart. We give a necessary and sufficient topological condition for $d\left(\alpha, T_{\beta}(\alpha)\right)$ to be 4 . We then characterise the pairs of α and β for which $5 \leq d\left(\alpha, T_{\beta}(\alpha)\right) \leq 6$. Lastly, we give an example of a pair of curves on S_{2} which represent vertices at a distance 5 in $\mathcal{C}\left(S_{2}\right)$ with intersection number 144. This example gives that $i_{\min }(2,5) \leq 144$.

Our proofs majorly rely on cut and paste techniques.

ACKNOWLEDGEMENT

First and foremost, I convey my immense gratitude to my thesis advisor Dr. Sreekrishna Palaparthi. He has not only aided me in learning mathematics but has also taught me the importance of its philosophy. I am grateful to him for generosity with his time and his invaluable insights, suggestions and encouragement in my mathematical endeavours.

I convey my heartfelt gratitude to Dr. K.V. Srikanth whose course in Differential Topology, 2017 has been the turning point in my mathematical career. It is from his lectures that I learnt the beauty of geometric thinking and the importance of pursuing the history behind mathematical concepts.
I convey my gratitude to Prof. William W. Menasco and Prof. Joan S. Birman for their helpful suggestions and helping me see newer potential of my work.

I convey my gratitude to the members of my doctoral committee Prof. Anupam Saikia, Prof. Rupam Barman and Dr. Vinay Wagh for encouraging and periodically reviewing my research work.

I thank Prof. Kalpesh Kapoor who has been a constant mentor throughout my studentship at IIT Guwahati. I learnt from him the value of kindness and selflessness in one's professional life.

The work I have done in these years would not have been possible without the love and presence of my family and friends. I am forever indebted to them for their unwavering support during the murky times of the Covid pandemic.

Finally, I acknowledge support from the Department of Mathematics, Indian Institute of Technology Guwahati.

Abstract
Acknowledgementviiix
Chapter 1. Introduction
1.1. Overview of the thesis
1.2. Prospects 61
Chapter 2. Preliminaries 9
2.1. Surfaces
2.2. Curves
2.3. Mapping Class Group2.4. Dehn Twists9910
2.5. Curve graph11
2.6. Minimal intersection number 13
2.7. Subsurface projection 14
2.8. Efficient geodesics in $\mathcal{C}\left(S_{g}\right)$ 15
Chapter 3. Setup 17
3.1. Amenable to Dehn twist in special position 17
3.2. Discs of transformation 18
3.3. Filling pairs of curves using Dehn twists 20
Chapter 4. Distance 4 Curves on $\mathcal{C}\left(S_{g}\right)$ 27
4.1. Terminology 27
4.2. Distance 4 curves 29
Chapter 5. Scaling Curves 37
5.1. Filling system of arcs 37
5.2. Buckets 38
5.3. Scaling curves 39
5.4. Properties of buckets 41
5.5. Almost filling arcs 44

Chapter 6. Criteria for $d\left(a_{0}, t_{a_{4}}\left(a_{0}\right)\right) \geq 5 \quad 47$
6.1. Representative of $c \square 48$
6.2. Values of $d\left(c, a_{0}\right) \quad 49$
6.3. Conclusion 56

Chapter 7. A Pair of Distance 5 Curves on $\mathcal{C}\left(S_{2}\right) \quad 57$
Bibliography

CHAPTER 1

INTRODUCTION

A surface, S, is a real two-dimensional oriented differential manifold. It's natural to wonder how many distinct complex structures can S be equipped with. This problem is popularly known as the Riemann's moduli problem and the corresponding space of these structures is known as the moduli space of S. We briefly look into the moduli space of S when S is a closed surface. For the case when S has genus zero, its moduli space consists of a single point which is the Riemann sphere. When the genus of S is one, it has been proven that its moduli space can be identified by the complex plane. Consider $S=S_{g}$ has genus, g, greater than one. Riemann claimed that the moduli space of S_{g} is determined by $3 g-3$ complex parameters. After Riemann, the structure of the moduli space of S_{g} became an active field of interest over the next few decades.

Teichmüller gave a new approach to the moduli problem by defining a cover of the moduli space and studying its structure intrinsically. This space, known as the Teichmüller space corresponding to S_{g}, is denoted by Teich $\left(S_{g}\right)$ and is defined as follows : By a hyperbolic structure on S_{g} we will mean a diffeomorphism $f: S_{g} \longrightarrow$ T, where T is a surface with a complete, finite-area hyperbolic metric and denote it by (T, f). We refer to (T, f) as a marked hyperbolic surface. We say that $\left(T_{1}, f_{1}\right)$ and $\left(T_{2}, f_{2}\right)$ are equivalent if there is an isometry $I: T_{1} \longrightarrow T_{2}$ such that $I \circ f_{1}$ and f_{2} are homotopic. The space of distinct marked hyperbolic surfaces of S_{g} is Teich $\left(S_{g}\right)$. The group of isotopy classes of orientation preserving homeomorphisms of S_{g} is known as the mapping class group of S_{g} and is denoted by $\operatorname{Mod}\left(S_{g}\right)$. A classical fact is that the moduli space of S comes out to be Teich $\left(S_{g}\right) / \operatorname{Mod}\left(S_{g}\right)$. An elaborate account of the historical development of the moduli space of surfaces and the corresponding Techmüller spaces can be found in [1].

In [11], William J. Harvey associated a finite dimensional simplical complex corresponding to a surface, called the complex of curves, as a tool to study the corresponding Teichmüller space. By a curve on S_{g} we will mean an essential simple closed curve on it. Harvey considered the vertices of the complex of curves to be the isotopy classes of curves on S_{g} and any collection of $k+1$ mutually disjoint curves comprised to form a k-simplex. In [13], Ivanov used the complex of curves to give a geometric proof to the famous theorem by Royden in [23] which states that the isometry group of the Teich $\left(S_{g}\right)$ is the corresponding extended mapping class group. The complex of curves becomes a natural geometric object on which $\operatorname{Mod}\left(S_{g}\right)$ acts and thus becomes an intriguing space to study. Although the higher dimensional simplices find a number of applications (see, $[\mathbf{1 4}]$), the combinatorial properties of the complex of curves is completely determined by its 1-skeleton. This 1-dimensional simplical complex is called the curve graph and is denoted by $\mathcal{C}\left(S_{g}\right)$. The curve graph is a connected graph (see, $[\mathbf{9}]$) and thus, it can be equipped with a path-metric d. More precisely, the distance d between any two vertices of $\mathcal{C}\left(S_{g}\right)$ is the minimal number of edges in any edge path between them.

Masur and Minsky in their seminal work in [18] discovered that $\mathcal{C}\left(S_{g}\right)$ with the metric d is an infinite diameter δ-hyperbolic space. Later it was shown that the δ can be chosen to be independent of the surface S_{g}, see [2], [7], [8], [12], [22]. The coarse geometry of the curve complex plays a pivotal role in understanding the hyperbolic structure of 3-manifolds, the mapping class group of surfaces and Teichmuller theory. One can see [21] for many such applications.

In comparison the local geometry of $\mathcal{C}\left(S_{g}\right)$ remains relatively unexplored. For instance there is no characterisation of a 3 -sphere around a vertex in $\mathcal{C}\left(S_{g}\right)$. A fundamental hindrance while studying $\mathcal{C}\left(S_{g}\right)$ is that there are infinitely many distinct vertices adjacent to any vertex in $\mathcal{C}\left(S_{g}\right)$. In [19], the authors circumvented this local infinitude of $\mathcal{C}\left(S_{g}\right)$ by defining a set of geodesics called the tight geodesics in $\mathcal{C}\left(S_{g}\right)$. They prove that between any two vertices of $\mathcal{C}\left(S_{g}\right)$ there are only finitely many tight geodesics. Similar notions have been used in $[\mathbf{2 4}],[\mathbf{2 5}],[\mathbf{2 6}]$ and $[\mathbf{5}]$ to overcome this local pathology of $\mathcal{C}\left(S_{g}\right)$ and to compute distances between any two vertices. In [4], the authors show the existence of infinite geodesic rays in $\mathcal{C}\left(S_{g}\right)$. The intersection number between the vertices of these geodesic rays is bounded above by a polynomial of the complexity of the surface and hence, is asymptotically low. Knowing the local geometry of the curve graph promises aid in determining exact distances between its vertices more efficiently than the existing methods. Further, this information can also be employed in calculating the translation length of pseudo-Anosov mapping classes and studying the action of $\operatorname{Mod}\left(S_{g}\right)$ on $\mathcal{C}\left(S_{g}\right)$ more precisely.

Ivanov proved in [13] that the group of automorphisms of the complex of curves is $\operatorname{Mod}\left(S_{g}\right)$. Since $\operatorname{Mod}\left(S_{g}\right)$ is generated by Dehn twists about a finite collection
of curves on S_{g}, we attempt a study of $\mathcal{C}\left(S_{g}\right)$ at a granular scale by looking at the impact of powers of Dehn twists on vertices of $\mathcal{C}\left(S_{g}\right)$ which are at shorter distances apart. Let α and γ be two curves on S_{g} and $p \in \mathbb{N}$.

Remark 1. If $d(\alpha, \gamma)=1$, then $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right)=d(\alpha, \gamma)-1$.
REmARK 2. If $d(\alpha, \gamma)=2$, then $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right)=d(\alpha, \gamma)$.
Remark 1 follows from the fact that if $d(\alpha, \gamma)=1$, then $T_{\gamma}^{p}(\alpha)=\alpha$. Remark 2 can be arrived at as follows : if $d(\alpha, \gamma)=2$, then there exists a curve c on S_{g} such that $d(\alpha, c)=1$ and $d(c, \gamma)=1$. Since $i\left(\alpha, T_{\gamma}^{p}(\alpha)\right)=p(i(\alpha, \gamma))^{2}$ therefore, $i\left(\alpha, T_{\gamma}^{p}(\alpha)\right) \neq 0$. Hence, $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right) \geq 2$. Since α and γ are essential, simple closed curves in $S_{g} \backslash c$ we have, $T_{\gamma}^{p}(\alpha)$ is also an essential, simple closed curve in $S_{g} \backslash c$. It follows that $\alpha, c, T_{\gamma}^{p}(\alpha)$ forms a geodesic in $\mathcal{C}\left(S_{g}\right)$.

In general, one can ask the following question:
QUESTION 1. If $d(\alpha, \gamma)>2$, then what is the relation between $d(\alpha, \gamma)$ and $d\left(\gamma, T_{\gamma}^{p}(\alpha)\right) ?$

We note that if $d(\alpha, \gamma)=n$ then $d\left(T_{\gamma}^{p}(\alpha), \gamma\right)=n$. This follows from taking the image of the geodesic in $\mathcal{C}\left(S_{g}\right)$ between α and γ under the action of the isometry T_{γ}^{p}.

1.1. Overview of the thesis

In chapter 2 we define and state some properties of the mapping class group, curve graph, minimal intersection number and efficient geodesics.

Let α and γ be curves on S_{g}. In chapter 3, we state and prove the following theorem 5.

THEOREM 5. Let α and γ be a filling pair of curves on S_{g}. Then α and $T_{\gamma}^{p}(\alpha)$ also fills S_{g}.

In chapter 4, we apply theorem 5 to prove theorem 6 as stated below. This answers question 1 for $d(\alpha, \gamma)=3$ and shows that $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right)=d(\alpha, \gamma)+1$.

Theorem 6. If α and γ be two curves on S_{g} with $d(\alpha, \gamma)=3$, then $d\left(\alpha, T_{\gamma}(\alpha)\right)$ $=4$.

A byproduct of theorem 6 is infinitely many examples of vertices at a distance 4 in $\mathcal{C}\left(S_{g}\right)$. These examples are the first examples of curves at a distance 4 apart on $\mathcal{C}\left(S_{g>3}\right)$ which can be explicitly seen as a three dimensional rendering. As a demonstration of our method we construct a pair of distance 4 curves on S_{4} (Figure 2) from a minimally intersecting pair of distance 3 curves (Figure 1) as described in [3]. In general, Aougab and Huang give a method to construct pairs of minimally

Figure 1. Minimally intersecting curves representing vertices at a distance 3 in $\mathcal{C}\left(S_{4}\right)$

Figure 2. Curves on S_{4} representing vertices at a distance 4 in $\mathcal{C}\left(S_{4}\right)$. The intersection number of these curves is 49 .
intersecting pair of curves which are at a distance 3 in $\mathcal{C}\left(S_{g \geq 3}\right)$. Using any such pair of curves on S_{g} we can explicitly construct a pair of curves which are at a distance 4 in $\mathcal{C}\left(S_{g}\right)$.

The minimal intersection number between any two curves on S_{g} which are at a distance n is denoted by $i_{\min }(g, n)$. In [4], Aougab and Taylor proved that for $g \geq 3, i_{\min }(g, 3)=2 g-1$ and $i_{\text {min }}(2,3)=4$. In [4], Aougab and Taylor proved that in general, $i_{\min }(g, 4)=O\left(g^{2}\right)$. In chapter 4 , we apply our examples of curves which are at a distance 4 in $\mathcal{C}\left(S_{g}\right)$ to improve the known upper bound of $i_{\min }\left(g_{\geq 4}, 4\right)$ to $(2 g-1)^{2}$.

Corollary 1. For a surface of genus $g \geq 3, i_{\min }(g, 4) \leq(2 g-1)^{2}$.

As a natural extension to theorem 6, we look into the analogous question 2. We were motivated to look into this process with the long term promise of creating examples of curves at a distance $n+1$ by using curves at a distance n apart.

Question 2. For curves, α and γ, on S_{g} with $d(\alpha, \gamma)=4$, what are the possible values of $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right)$ for $p \in \mathbb{N}$?

In chapter 5 we define a family of curves known as the scaling curves. These curves are formed using arcs of $\gamma \backslash \alpha$ and we show that they fill along with α. The idea behind a scaling curve is the intuition that γ encodes the information of a few naturally occurring curves which are at a distance 3 from α and distance 1 from γ.

Let $a_{0}=\alpha, a_{1}, a_{2}, a_{3}, a_{4}=\gamma$ be a geodesic in $\mathcal{C}\left(S_{g}\right)$. The authors in [4] have shown that for some large enough constant $B \in \mathbb{N}, d\left(a_{0}, T_{T_{a_{3}}^{B}\left(a_{0}\right)}^{B}\left(a_{0}\right)\right)=6$. The authors use arguments involving subsurface projection to show that

$$
d\left(a_{0}, T_{T_{a_{3}}^{B}\left(a_{0}\right)}^{B}\left(a_{0}\right)\right)=6
$$

for a large enough constant $B \in \mathbb{N}$. In chapter 6 , we employ the same arguments to show that for any general γ there exists a constant $K \in \mathbb{N}$ such that $d\left(\alpha, T_{\gamma}^{k}(\alpha)\right)=6$, for every $k \geq K$, instead of the particular case when $\gamma=T_{a_{3}}^{B}\left(a_{0}\right)$. We then show that

$$
4 \leq d\left(\alpha, T_{\gamma}(\alpha) \leq 6\right.
$$

We use the scaling curves introduced in chapter 5 to give a necessary and sufficient condition for $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)=4$ in lemma 9 .

Let N be an annular neighbourhood of a_{4} and $B_{m}\left(T_{a_{4}}\left(a_{0}\right)\right)$ be the sphere of radius m around $T_{a_{4}}\left(a_{0}\right)$. Let $\delta \in B_{1}\left(T_{a_{4}}\left(a_{0}\right)\right)$ and $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right) \cap B_{1}(\delta)$. Then, c is a standard single strand curve if $i\left(c, a_{4}\right)=1$ and if there exists an isotopic representative of c such that $\left(c \cap a_{0}\right) \subset N$. In section 6.3 , we describe a placement of the components of $N \backslash\left(a_{0} \cup a_{4}\right)$ which is equivalent to there being a curve on S_{g} which is mutually disjoint from a_{0} and c. We call this arrangement of the components as the stacking property. We then apply lemma 9 to arrive at the following theorem which gives that $5 \leq d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right) \leq 6$ for a judicious choice of a_{0} and a_{4}.

Theorem 9. Let α and γ be curves on S_{g} such that $d(\alpha, \gamma)=4$ and the components of $S_{g} \backslash(\alpha \cup \gamma)$ doesn't contain any hexagons. Then, $d\left(\alpha, T_{\gamma}(\alpha)\right) \geq 5$ if and only if there doesn't exist any standard single strand curve $c \in B_{2}\left(T_{\gamma}(\alpha)\right)$ having the stacking property.

In chapter 7 we give a pair of curves on S_{2} which are at a distance 5 apart on $\mathcal{C}\left(S_{2}\right)$ with intersection number 144. An immediate conclusion of this example is:

Corollary 4. $i_{\text {min }}(2,5) \leq 144$.

1.2. Prospects

A conclusion from the above results is that as we ascend distances from $d\left(a_{0}, a_{3}\right)$ $=3$ to $d\left(a_{0}, a_{4}\right)=4$, the neatness of the result $d\left(a_{0}, T_{a_{n \leq 3}}^{p}\left(a_{0}\right)\right)=d\left(a_{0}, a_{n}\right)+C(n)$, where $C(n)$ is a constant function, doesn't carry over to the value of $d\left(a_{0}, T_{a_{4}}^{p}\left(a_{0}\right)\right)$. Rather we have a pair of curves b_{0}, b_{4} on S_{2} and a constant $K \in \mathbb{N}$ such that $d\left(b_{0}, b_{4}\right)=4$ and $d\left(b_{0}, T_{b_{4}}^{k}\left(b_{0}\right)\right)=6, \forall k \geq K$ but $d\left(b_{0}, T_{b_{4}}\left(b_{0}\right)\right)=5$. This thus prompts the following questions :

Question 3. What are the values of $k \in \mathbb{N}$ such that $d\left(a_{0}, T_{a_{4}}^{k}\left(a_{0}\right)\right)=6$?
Let v and w be curves on S_{g} such that $d(v, w)=n \geq 3$. Further suppose $i(v, w)=i_{\min }(g, n)$. The components of $S_{g} \backslash(v \cup w)$ can be regarded as polygons whose edges are arcs from the set $(v \backslash w) \cup(w \backslash v)$. In [6], the authors remark from their observations regarding $i_{\min }(g, n)$ when $g=2$ and $n=3,4$ that for lower distances the minimal intersection number is not only dependent on g and n but also on the combinatorics of the polygons in $S_{g} \backslash(v \cup w)$. We observe from our core proof idea of theorem 5 that the polygonal composition of $S_{g} \backslash\left(a_{0} \cup T_{a_{4}}^{k}\left(a_{0}\right)\right)$ differs from the polygonal composition of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ only in the number of rectangles. The number of rectangles depend on k and $i\left(a_{0}, a_{4}\right)$. This observation along with the finding that $d\left(b_{0}, T_{b_{4}}^{k}\left(b_{0}\right)\right)$ can either be 5 or, 6 depending on the value of k helps us deduce that rectangles in $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ have a significant role in determining distances in $\mathcal{C}\left(S_{g}\right)$.

Question 4. Let a_{0} and a_{4} be curves on S_{g} such that $d\left(a_{0}, a_{4}\right)=4$ and $i\left(a_{0}, a_{4}\right)=i_{\min }(g, 4)$. Is $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)=5$?

We conjecture that question 4 has a positive answer. We further conjecture that for any general γ with $d\left(a_{0}, \gamma\right)=4$ such that a_{0} and γ have arbitrary intersection number, it need not be true that $d\left(a_{0}, T_{\gamma}\left(a_{0}\right)\right)=5$. A possible counterexample to this might be $\gamma=T_{a_{3}}\left(a_{0}\right)$ where $d\left(a_{0}, a_{3}\right)=3$ and $d\left(a_{3}, a_{4}\right)=1$. We conjecture that $d\left(a_{0}, T_{T_{a_{3}}\left(a_{0}\right)}\left(a_{0}\right)\right)=6$.

From our observations that $i_{\min }(g, 4) \leq i_{\min }(g, 3)^{2}$, it prompts us to ask the following question :

Question 5. Is $i_{\min }(g, 5) \leq i_{\min }(g, 4)^{2}$?
In [4], Aougab and Taylor showed that for large enough distances, $i_{\min }(g, n)$ is independent of g. From [17], we note that the geodesic triangle in $\mathcal{C}\left(S_{g}\right)$ with vertices a_{0}, a_{3} and $T_{a_{3}}^{k}\left(a_{0}\right)$ is 0-hyperbolic for every $k \in \mathbb{N}$. The results in [4] give that the geodesic triangle in $\mathcal{C}\left(S_{g}\right)$ with vertices a_{0}, a_{3} and $T_{T_{a_{3}}^{B}\left(a_{0}\right)}^{B}\left(a_{0}\right)$ is 0 -hyperbolic for some constant $B \in \mathbb{N}$. As a consequence of the aforementioned pair of curves, b_{0} and $T_{b_{4}}\left(b_{0}\right)$, we observe that the geodesic triangle formed with
vertices b_{0}, b_{4} and $T_{b_{4}}\left(b_{0}\right)$ is 1-hyperbolic. This leads to the conclusion that geodesic triangles formed with vertices a_{0}, a_{n} and $T_{a_{n}}^{k}\left(a_{0}\right)$ need not be 0-hyperbolic for all values of $k \in \mathbb{N}$. This leads to the following prospective question that was suggested by Joan Birman:

QUESTION 6. Let a_{0} and a_{n} be a pair of curves on S_{g} such that $d\left(a_{0}, a_{n}\right)=n$. Let Δ be the geodesic triangle in $\mathcal{C}\left(S_{g}\right)$ with vertices a_{0}, a_{n} and $T_{a_{n}}\left(a_{0}\right)$. What is the minimum value of δ for which Δ is δ-hyperbolic?

Chapter 2

In this chapter, we introduce definitions and theorems that will be used in this thesis. Since our work involves only closed surfaces, our definitions and theorems are tailored accordingly. For the analogous definitions involving surfaces of finite type, see [9]. This chapter doesn't contain any original work of the author.

2.1. Surfaces

A surface is a real 2-manifold. In this thesis we will consider only closed, oriented surfaces. By the classification of surfaces theorem, any closed, connected and oriented surface is homeomorphic to the connected sum of a 2-dimensional sphere with $g \geq 0$ tori. Here g is called the genus of the surface. We will denote a surface with genus g by S_{g}. The Euler-characteristic of S_{g} comes out to be $2-2 g$ and it is a homeomorphic invariant of S_{g}. For the purpose of this thesis, we will consider that $g \geq 2$. We insist on this restriction on g as the geometry of the sphere and the torus is different and relatively well explored for our purpose.

2.2. Curves

A curve on S_{g} is an embedding of the unit circle into S_{g}. A curve on S_{g} is called essential if it is not null-homotopic. Throughout the thesis, by a curve on S_{g}, we will mean essential curves on S_{g}. For any curve γ on $S_{g},[\gamma]$ is used to denote the isotopy class of γ on S_{g}. Let μ and λ be two curves on S_{g} in transverse position. The geometric intersection number of μ, λ is denoted as $i(\mu, \lambda)$ and is given as

$$
i(\mu, \lambda)=\min \{|a \cap b|: a \in[\mu], b \in[\lambda]\}
$$

We say that curves, μ and λ, are in minimal position if μ and λ intersect at $i(\mu, \lambda)$ points. A bigon is said to have been formed by μ and λ if an embedded disc
in S_{g} is enclosed by the union of two arcs, one from μ and the other from λ. For any given pair of curves, the following bigon criteria gives an algorithm to figure out representatives that are in minimal positions.

Fact 1. (The Bigon Criterion) Two transverse curves on S_{g} are in minimal position if and only if they do not form any bigons.

Proof. See [9, Proposition 1.7].
FACT 2. (Existence of minimal representatives) Given μ_{1}, \ldots, μ_{k} are curves in S_{g} which are pairwise in minimal position and nonisotopic. Then any curve μ_{k+1} on S_{g} has a representative that is in minimal position with μ_{i} for all $i \in\{1, \ldots, k\}$.

Thus, as is the common practice in this subject whenever we consider a collection of curves on S_{g}, we will consider isotopic representatives of these curves which are in minimal position with each other.

We say that μ and λ forms a filling pair of curves on S_{g} if the components of $S_{g} \backslash(\mu \cup \lambda)$ are topological discs. If μ and λ fill S_{g} then S_{g} can also be considered as a 2 dimensional CW-complex in the following manner : The 0 skeleton comprises of the distinct points in $\mu \cap \lambda$. The edge set comprises of the arcs of $\mu \backslash \lambda$ and $\lambda \backslash \mu$. The faces comprises of the discs in $S_{g} \backslash(\mu \cup \lambda)$.

2.3. Mapping Class Group

The mapping class group of S_{g} is the group of isotopy classes of orientationpreserving homeomorphisms of S_{g}. We denote this group by $\operatorname{Mod}\left(S_{g}\right)$. Figure 1 and 2 give examples of finite order mapping classes. Both these examples can be generalised to obtain elements of $\operatorname{Mod}\left(S_{g}\right)$ by considering the analogous rigid motions of S_{g} in \mathbb{R}^{3}.

Figure 1. Rotating S_{3} about the central axis by π gives an order 2 mapping class in $\operatorname{Mod}\left(S_{3}\right)$ known as the hyperelliptic involution.

We now look at a class of infinite order mapping classes which were introduced by Max Dehn.

Figure 2. Rotating S_{5} and S_{6} about the centre by $\frac{2 \pi}{5}$ gives order 5 mapping classes in $\operatorname{Mod}\left(S_{5}\right)$ and $\operatorname{Mod}\left(S_{6}\right)$ respectively.

2.4. Dehn Twists

Consider the annulus, $A=S^{1} \times[0,1]$ and define $T: A \longrightarrow A$ as $(\theta, r) \mapsto$ $(\theta+2 \pi r, r)$. The action of T is called as "right twist" and by replacing $(\theta+2 \pi r)$ by $(\theta-2 \pi r)$, a "left twist" is obtained.

Figure 3. Annular and cylindrical view of the action of T.
Let α be a curve in S_{g}. Let N be an annular neighbourhood of α and $\phi: A \longrightarrow$ N be an orientation preserving homeomorphism. Then, the Dehn twist about α, $T_{\alpha}: S_{g} \longrightarrow S_{g}$ is defined as

$$
T_{\alpha}(x)= \begin{cases}\phi \circ T \circ \phi^{-1}(x) & x \in N \\ x & x \notin N\end{cases}
$$

The action of T_{α} on S can be interpreted as "T acting on N" and keeping $S_{g} \backslash N$ fixed. The mapping class, T_{α}, is well-defined upto isotopy for the isotopy class of α.

Let λ, μ be curves on S_{g} and $p \in \mathbb{N}$. If $i(\mu, \lambda)=0$, we have that $T_{\mu}^{p}(\lambda)=\lambda$. If $i(\mu, \lambda) \neq 0$, can obtain a picture of $T_{\mu}^{p}(\lambda)$ by performing a surgery of curves described as follows. Suppose $k=i(\mu, \lambda)$. Draw $p k$ distinct and parallel copies of μ say, $\mu_{1}, \ldots, \mu_{p k}$ on S_{g} which are in minimal position with λ. For $i \in\{1, \ldots, p k\}$, at each point of $\mu_{i} \cap \lambda$, perform the surgery of curves as in figure 5. Performing this surgery gives a representative of $T_{\mu}^{p}(\lambda)$ on S_{g}. Details of this surgery can be found in [9, page 70].

Figure 4. Action of T_{α} on the pink curve.

Figure 5. Surgery of curves performed to obtain $T_{\mu}(\lambda)$.

The following are a few facts about Dehn twists that are necessary for the work in this thesis.

FACT 3. Let μ and λ be curves on S_{g} and $p \in \mathbb{Z}$. Then

$$
i\left(T_{\mu}^{p}(\lambda), \lambda\right)=|p|(i(\mu, \lambda))^{2}
$$

Proof. See [9, Proposition 3.2]
FACT 4. Let μ be a curve on S_{g}. Then T_{μ} is an infinite order mapping class.
Proof. Corollary of Fact 3.
Theorem 1. (Dehn-Lickorish theorem) $\operatorname{Mod}\left(S_{g}\right)$ is generated by finitely many Dehn twists about non-separating curves.

Proof. See [9, Theorem 4.1].

2.5. Curve graph

The curve graph of S_{g}, denoted by $\mathcal{C}\left(S_{g}\right)$ is a 1 dimensional simplical complex defined as follows : the 0 -skeleton is in one-to-one correspondence with isotopy
classes of essential simple closed curves on S_{g}. Two vertices span an edge in $\mathcal{C}\left(S_{g}\right)$ if and only if these vertices have mutually disjoint representatives. By an excusable abuse of notation, for any curve γ on S_{g} we will use γ to denote the curve as well its isotopy class whenever the context is clear.

FACT 5. $\mathcal{C}\left(S_{g}\right)$ is a connected graph.
Proof. See [9, Theorem 4.3].
By virtue of fact 5 , we can make $\mathcal{C}\left(S_{g}\right)$ into a path-metric space. We define the distance, d, between any two vertices in $\mathcal{C}\left(S_{g}\right)$ as the minimum of lengths of all the paths between these two vertices.

FACT 6. $\left(\mathcal{C}\left(S_{g}\right), d\right)$ is a δ-hyperbolic space.
Proof. See [19].
Fact 7. Let μ and λ be curves on S_{g}. Then, $d(\mu, \lambda) \geq 3$ if and only if μ and λ fill S_{g}.

Proof. If μ and λ fill then $i(\mu, \lambda) \neq 0$ and also, there doesn't exist any curve c on S_{g} that is disjoint from both μ and λ. Thus, $d(\mu, \lambda)$ can't be 1 or 2 . Hence, $d(\mu, \lambda) \geq 3$.

Suppose μ and λ don't fill S_{g}. If $i(\mu, \lambda)=0$, then $d(\mu, \lambda)=1$. If $i(\mu, \lambda) \neq 0$, then by the classification of surfaces theorem there exists a non-disc, non-annular component of $S_{g} \backslash(\mu \cup \lambda)$. Considering a curve in this particular component gives a distance 2 path between μ and λ. Thus, $d(\mu, \lambda)<3$.

2.6. Minimal intersection number

For a given distance $n \in \mathbb{N}$ and genus $g, i_{\min }(g, n)$ is the quantity defined as

$$
i_{\min }(g, n)=\min \{i(\alpha, \beta): d(\alpha, \beta)=n\}
$$

Since any two curves on $\mathcal{C}\left(S_{g}\right)$ which are at a distance 1 apart are disjoint, we have that $i_{\min }(g, 1)=0$. By the classification of surfaces theorem, we can always find curves which intersect once and don't fill S_{g}. Thus, such curves are at a distance 2 apart on $\mathcal{C}\left(S_{g}\right)$ and hence, $i_{\text {min }}(g, 2)=1$. By Euler characteristic considerations the theoretical minimum for $i_{\text {min }}(g, 3)$ is $2 g-1$. In [4], the Aougab and Taylor proved that for $g \geq 3, i_{\min }(g, 3)=2 g-1$ and $i_{\min }(2,3)=4$. For showing $i_{\min }(g, 3)=$ $2 g-1$, they used the list of minimally intersecting filling pairs of curves given by Aougab and Huang in [3]. In [10], the authors using the MICC software showed that $i_{\min }(2,4)=12$ by listing all minimally intersecting pairs of curves at distance 4 . In [20], the author provides a pair of distance 4 curves on S_{3} with intersection number 21. Thus, $i_{\min }(3,4) \leq 21$. In [4], Aougab and Taylor proved that $i_{\min }(g, 4)=O\left(g^{2}\right)$
by answering a more general question by Dan Margalit that $i_{\text {min }}(g, n)=O\left(g^{n-2}\right)$. With this information, the following questions still remains open :

Question 7. What is $i_{\min }(g, 4)$ for $g \geq 3$?
In general,
Question 8 . What is $i_{\min }(g, n)$ for $n \geq 5$?

2.7. Subsurface projection

We briefly define subsurface projections and state the bounded geodesic theorem which were introduced in detail by Masur and Minsky in [19]. Let Y be an isotopy class of an incompressible, non-peripheral, connected proper open subsurface of S_{g} which is not an annulus. An arc in Y is a homotopy class of properly embedded paths in Y which cannot be deformed to a point. We define the arc complex of $Y, \mathcal{A}(Y)$ as : the set of vertices comprises of arcs and curves in Y and any two vertex share an edge if they are disjoint. Let $\mathcal{A}_{0}(Y)$ and $\mathcal{C}_{0}\left(S_{g}\right)$ denote the vertex set of $\mathcal{A}(Y)$ and $\mathcal{C}\left(S_{g}\right)$, respectively. Corresponding to a set X, we use $\mathcal{P}(X)$ to denote the set of finite subsets of X. We define the following two functions :

- $\psi_{Y}: \mathcal{A}_{0}(Y) \longrightarrow \mathcal{P}\left(\mathcal{A}_{0}(Y)\right)$ such that
- if α is a curve on $Y, \psi(\alpha)=\{\alpha\}$
- if α is an arc on $Y, \psi(\alpha)$ are the boundary curves of a neighbourhood of $\alpha \cup \partial(Y)$
- $\pi_{Y}^{\prime}: \mathcal{C}_{0}\left(S_{g}\right) \longrightarrow \mathcal{P}\left(\mathcal{A}_{0}(Y)\right)$ such that
- if $\alpha \cap Y=\phi, \pi_{Y}^{\prime}(\alpha)=\phi$
$-\pi_{Y}^{\prime}(\alpha)$ is otherwise the set of all the essential arcs in $Y \cap \alpha$.
We define the subsurface projection π_{Y} by $\pi_{Y}: \mathcal{C}\left(S_{g}\right) \longrightarrow \mathcal{P}\left(\mathcal{A}_{0}(Y)\right), \alpha \mapsto$ $\psi_{Y}\left(\pi_{Y}^{\prime}(\alpha)\right)$. Let d_{Y} be a metric on $\mathcal{C}\left(S_{g}\right)$ such that $d_{Y}(v, w)=\operatorname{dist}\left(\pi_{Y}(v), \pi_{Y}(w)\right)$.

Suppose Y is an annular subsurface in S_{g} whose core curve, γ, is non-trivial. Let \hat{Y} be the natural compactification of the annular cover of S_{g} such that Y lifts to this cover homeomorphically. Such a compactification is obtained by equipping S_{g} with a choice of hyperbolic metric. We define the curve graph corresponding to $Y, \mathcal{C}(Y)$, as follows : the set of vertices, $\mathcal{C}_{0}(Y)$, comprises of paths with end points on the boundary component of \hat{Y}, modulo end points fixing homotopies. Any two vertices share an edge if they have disjoint interiors. The subsurface projection π_{Y} from $\mathcal{C}_{0}\left(S_{g}\right)$ to $\mathcal{P}\left(\mathcal{C}_{0}(Y)\right)$: If $\beta \cap \gamma=\phi, \pi_{Y}(\beta)=\phi$. Otherwise, $\pi_{Y}(\beta)$ consists of the lifts of arcs of $\beta \cap Y$ in \hat{Y} with well-defined end points on the distinct components of $\partial(\hat{Y})$. We define d_{α} analogous to d_{X} where X is a non-annular subsurface.

The bounded geodesic theorem was discovered and proved by Masur and Minsky in [19]. The version of this theorem stated below is given by Webb in [27].

Theorem 2 (Bounded geodesic theorem). There is an $M \geq 0$ so that for S_{g} and any geodesic g in $\mathcal{C}\left(S_{g}\right)$, if each vertex of g meets the subsurface Y, then $\operatorname{diam}\left(\pi_{Y}(g)\right) \leq M$.

2.8. Efficient geodesics in $\mathcal{C}\left(S_{g}\right)$

A fundamental hindrance while studying $\mathcal{C}\left(S_{g}\right)$ is that there are infinitely many distinct vertices adjacent to any vertex in $\mathcal{C}\left(S_{g}\right)$. This pathological property of $\mathcal{C}\left(S_{g}\right)$ is commonly referred to as its local-infinitude. In [19], the authors circumvented this local infinitude of $\mathcal{C}\left(S_{g}\right)$ by defining a set of geodesics called the tight geodesics in $\mathcal{C}\left(S_{g}\right)$. They proved that between any two vertices of $\mathcal{C}\left(S_{g}\right)$ there are only finitely many tight geodesics. Similar notions to consider special classes of geodesics have been developed in $[\mathbf{2 4}],[\mathbf{2 5}],[\mathbf{2 6}]$ and [5] to overcome the local infinitude of $\mathcal{C}\left(S_{g}\right)$ and compute distances between any two vertices. The algorithm in [5] is by far the most effective in calculating small distances in $\mathcal{C}\left(S_{g}\right)$.

Consider a geodesic, ν_{0}, \ldots, ν_{N} of length $N \geq 3$ in $\mathcal{C}\left(S_{g}\right)$. An arc, ω in S is a reference arc for the triple $\nu_{0}, \nu_{1}, \nu_{N}$ if ω and ν_{1} are in minimal position and the interior of ω is disjoint from $\nu_{0} \cup \nu_{N}$. Such arcs were considered by Leasure in [15]. The authors of [5] define the following concept of efficient geodesics in $\mathcal{C}\left(S_{g}\right)$ and prove that there exists finitely many initially efficient geodesic between any two vertices of $\mathcal{C}(S)$. The oriented geodesic ν_{0}, \ldots, ν_{N} is said to be initially efficient if $i\left(\nu_{1}, \omega\right) \leq N-1$ for all choices of reference arc, ω. Finally, the geodesic ν_{0}, \ldots, ν_{N} is efficient if the oriented geodesic ν_{k}, \ldots, ν_{N} is initially efficient for each $0 \leq k \leq N-3$ and the oriented geodesic $\nu_{N}, \nu_{N-1}, \nu_{N-2}, \nu_{N-3}$ is also initially efficient. The following theorem says that between any two vertices in $\mathcal{C}\left(S_{g}\right)$ there are finitely many efficient geodesics.

ThEOREM 3. If v and w are vertices of $\mathcal{C}\left(S_{g}\right)$ with $d(v, w) \geq 3$, then there exists an efficient geodesic from v to w. Further, there is an explicitly computable list of at most $n^{6 g-6}$ vertices v_{1} that can appear as the first vertex on an initially efficient geodesic

$$
v=v_{0}, v_{1}, \ldots, v_{n}=w
$$

In particular, there are finitely many efficient geodesics from v to w.
Proof. See [5, Theorem 1.1].
The following theorem from [10] gives a criterion for detecting vertices in $\mathcal{C}(S)$ at distance at-least 4. This criteria is based on the results proved in [5] which involves the efficient geodesics.

THEOREM 4. For the filling pair, κ, ω, let $\Gamma \subset \mathcal{C}^{0}(S)$ be the collection of all vertices such that the following hold:

Figure 6. $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ is an example of an initially efficient geodesic in $\mathcal{C}\left(S_{2}\right)$.
(1) for $\bar{\gamma} \in \Gamma, d(\kappa, \bar{\gamma})=1$; and
(2) for $\bar{\gamma} \in \Gamma$; for each segment, $b \subset \omega \backslash \kappa, i(\bar{\gamma}, b) \leq 1$.

Then $d(\kappa, \omega) \geq 4$ if and only if $d(\bar{\gamma}, \omega) \geq 3$ for all $\bar{\gamma} \in \Gamma$.
Proof. See [10, Theorem 1.3].

CHAPTER 3

 _SETUP

Let α and β be a filling pair of curves on S_{g}. The goal of this chapter is to pick nice enough representatives for $T_{\beta}(\alpha)$ w.r.t. the representatives of α, β and their annular neighbourhoods. In section 3.1 we pick suitable representatives for α, β and their corresponding annular neighbourhoods. In section 3.2, we describe the arcs of $T_{\beta}(\alpha)$ in the components common to the chosen annular neighbourhoods of α and β. Finally, in section 3.3, we show that α and $T_{\beta}^{p}(\alpha)$ fill S_{g}, for $p \in \mathbb{N}$.

This chapter comprises of results from $[\mathbf{1 7}$, Section 2] and [17, Step 1, Section 3].

For any ordered index in this thesis, we follow cyclical ordering. For instance, if $i \in\{1,2, \ldots, k\}, i=k+1$ will indicate $i=1$.

3.1. Amenable to Dehn twist in special position

Let λ and μ be two simple closed curves on S_{g}, R_{λ} and R_{μ} be closed regular neighbourhoods of λ and μ respectively. We choose R_{λ} and R_{μ} to be nice enough as described in the following definition and follow the algorithm in [9] to obtain $T_{\lambda}(\mu)$. However, our representative of the isotopy class of $T_{\lambda}(\mu)$ is chosen such that $T_{\lambda}(\mu)$ is linear in the components of $R_{\lambda} \cap R_{\mu}$.

Definition 1. Let λ and μ be two simple closed curves on S_{g} and let R_{λ} and R_{μ} be closed regular neighbourhoods of λ and μ respectively. We say that the 4-tuple ($\lambda, \mu, R_{\lambda}, R_{\mu}$) is amenable to Dehn twist in special position if the following hold:
(1) λ and μ intersect transversely and minimally on S_{g},
(2) λ and μ fill S_{g},
(3) the number of components of $R_{\lambda} \cap R_{\mu}$ is equal to the intersection number of λ and μ and each of these components is a disc.
(4) μ and λ are in minimal position with the components of $\partial\left(R_{\lambda}\right)$ and $\partial\left(R_{\mu}\right)$, respectively.

Let λ and μ be two minimally and transversely intersecting simple closed curves which fill S_{g}. In the following, we show that there exist closed regular neighborhoods R_{λ} and R_{μ} of λ and μ respectively such that the 4 -tuple $\left(\lambda, \mu, R_{\lambda}, R_{\mu}\right)$ is amenable to Dehn twist in special position. Consider a closed regular neighborhood, R_{λ}, of λ. The two components of ∂R_{λ} are disjoint simple closed curves each of which is isotopic to λ on S_{g}. Since μ intersects λ transversely, we can assume that μ intersects the closed annulus R_{λ} in essential arcs which are not boundary reducible. So, the number of these arcs will be precisely as many as the intersection number of λ and μ. We can take small closed regular neighborhoods of these arcs of $\mu \cap R_{\lambda}$ in R_{λ} such that each such neighborhood is a rectangular disk, the length of which runs parallel to the arcs of μ and the two breadth lines of which lie on the boundary curves of R_{λ} with each breadth line lying on a different component of ∂R_{λ}. The number of these disks is precisely the intersection number of λ and μ. Let r_{1}, r_{2}, \ldots, r_{k} denote these discs. For $i \in\{1, \ldots k\}$, we call any component of $r_{i} \cap \partial R_{\lambda}$ as the breadth line of r_{i}. Now we extend r_{i} 's into $S_{g} \backslash R_{\lambda}$ to form R_{μ}. To do this, we take a disks-with-handles presentation, Σ, of $S_{g} \backslash R_{\lambda}$. Σ is homeomorphic to $S_{g-1,2}$, via a homeomorphism ϕ, where each of the two boundary components of Σ is an image of each of the boundary component ∂R_{λ} via ϕ. Let \mathcal{A} be a maximal collection of properly embedded essential arcs that are pairwise non-parallel in Σ. The image under ϕ of the closure of each arc of μ contained in the complement of the annulus R_{λ} is an essential arc in Σ. These arcs cut Σ into disks because λ and μ fill S_{g}. These arcs of $\phi(\mu)$ can be assumed to be a disjoint collection of arcs, each of which is parallel to exactly one of the arcs in \mathcal{A}. We now take small closed regular neighborhoods of these k arcs in Σ, call them $s_{1}, s_{2} \ldots, s_{k}$, such that these s_{i} 's are mutually disjoint. Now, ϕ^{-1} of these s_{i} 's glue to r_{j} 's in some order along the breadth lines of r_{j} 's by suitably adjusting the breadth of r_{j} 's to give a regular neighbourhood of μ, R_{μ}. This completes the construction of R_{μ} as required. Note that $r_{1}, r_{2}, \ldots, r_{k}$ are the disks of intersection of R_{λ} and R_{μ} by construction and their number is equal to the intersection number of λ and μ.

3.2. Discs of transformation

Consider a 4-tuple $\left(\lambda, \mu, R_{\lambda}, R_{\mu}\right)$ which is amenable to Dehn twist in special position. Let $i(\lambda, \mu)=k$ and $K:=\{1,2, \ldots, k\}$. We construct a curve in the isotopy class of $T_{\lambda}(\mu)$ which we call $T_{\lambda}(\mu)$ in special position w.r.t. the 4-tuple

Figure 1. The figure to the left depicts A_{1} and the figure to the right depicts a possible A_{i}.
$\left(\lambda, \mu, R_{\lambda}, R_{\mu}\right)$. Start at any one of the components of $R_{\lambda} \cap R_{\mu}$ and label it as A_{1}. Since μ intersects λ transversely, the arc μ_{1} of μ contained in A_{1} which has its endpoints X and Y on boundary arcs of R_{λ} is such that X and Y lie on distinct boundary components of ∂R_{λ}. We call the component of ∂R_{λ} containing X to be $\partial_{+} R_{\lambda}$ and the other component containing Y to be $\partial_{-} R_{\lambda}$. Equip A_{1} with the Euclidean metric such that it is a square in the $x y$ - plane. Two opposite sides of A_{1} are formed from the arcs of ∂R_{λ} and the two remaining sides are formed from arcs of ∂R_{μ}. The x-axis lies along μ_{1} and the value of the x-coordinate increases from X to Y. Orient μ_{1} from X to Y. This induces an orientation on μ. Next we pick k distinct points $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ in the interior of μ_{1} such that the x-coordinate of q_{i} is greater than the x coordinate of q_{j} whenever $i>j$ and $i, j \in K$. For each $i \in K$, let λ_{i} be a curve in R_{λ} which is isotopic to λ and passes through q_{i}. Further for each $i, j \in K, i \neq j$ let λ_{i} and λ_{j} be disjoint.

Orient λ_{1} such that the y-coordinate on λ_{1} increases when following this orientation in the disk A_{1}. Starting with A_{1}, label the subsequent disk components, $R_{\lambda} \cap R_{\mu}$, as $A_{2}, A_{3}, \ldots, A_{k}$, in the orientation of λ_{1}. For each $i \in K, A_{i}$ contains a unique arc of μ which we label as μ_{i}. μ_{i} gets an induced orientation from μ. For each $i \in K$, equip A_{i} with Euclidean metric and assume it to be a square in the $x y$-plane where μ_{i} lies along the x-axis with the x coordinate increasing along the orientation of μ_{i}. Assume A_{i} to be positioned such that μ_{i} is the line segment joining the mid-points of the left and right sides of the square. In this orientation, call the component of ∂R_{μ} which appears above μ_{i} as $\partial_{+} R_{\mu}$ and the the component of ∂R_{μ} below μ_{i} as $\partial_{-} R_{\mu}$. However, note that the side of A_{i} which is formed from the arcs of $\partial_{+} R_{\lambda}$ could either be to the right or to the left of this square. Accordingly, the side of A_{i} which is formed from the arcs of $\partial_{-} R_{\lambda}$ could either be to the left or to the right of this square. For $i, j \in K$, by an isotopy inside A_{i}, we can assume that all the arcs of λ_{j} in A_{i} are straight lines.

Figure 2. Disk of transformation before (figure on the left) and after (figure on the right) the Dehn twist

For each $i, j \in K$, let $u_{i, j}:=A_{i} \cap \lambda_{j} \cap \partial_{+} R_{\mu}$ and $v_{i, j}:=A_{i} \cap \lambda_{j} \cap \partial_{-} R_{\mu}$. Also for each $i \in K$ let the left end point of μ_{i} in the square A_{i} be $v_{i, 0}$ and the right end point of μ_{i} in the square A_{i} be $u_{i, k+1}$. Construct the Dehn twist of μ about λ as follows: For each $j \in K \cup\{0\}$ draw line segments, $\theta_{i, j}$, connecting $v_{i, j}$ to $u_{i, j+1}$. $T_{\lambda}(\mu)$ is the curve

$$
\left(\left(\mu \cup\left(\cup_{i \in K} \lambda_{i}\right)\right) \cap\left(S_{g} \backslash\left(\cup_{i \in K} A_{i}\right)\right) \cup\left(\cup_{i, j \in K} \theta_{i, j}\right)\right.
$$

The schematic, Figure 2, shows A_{i} before and after this transformation. In the complement of A_{i} 's the transformation described above does not disturb the curves λ_{i} 's and μ. In the previous chapter, an algorithm to obtain the Dehn twist, $T_{\lambda}(\mu)$ has been described such that the curves in the discs of transformation are as in Figure 3. The line segments in Figure 2 are isotopic to the corresponding curves in 3 which shows that the above transformation indeed results in $T_{\lambda}(\mu)$. When $T_{\lambda}(\mu)$ is constructed as above and as shown in Figure 2, we say that $T_{\lambda}(\mu)$ is in special position w.r.t. λ and μ. We call the k copies of $\lambda, \lambda_{i}, i \in K$, and μ to be the scaffolding for $T_{\lambda}(\mu)$ and denote it by $\left(\left\{\lambda_{i}\right\}_{i \in K}, \mu\right)$. We call the Euclidean disks $A_{i}, i \in K$, along with the line segments $\theta_{i, j}$'s for $j \in K$ to be the disks of transformation for $T_{\lambda}(\mu)$. The points $u_{i, j}$'s, $v_{i, j}$'s, $u_{i, k+1}$ and $v_{i, 0}$ for $i, j \in K$ shall hold their meaning as defined in the context of the disks of transformations. So, using these phrases, when $T_{\lambda}(\mu)$ is in special position w.r.t. λ and μ, the scaffolding of $T_{\lambda}(\mu)$ remains unchanged outside its disks of transformation. Inside the disks of transformation for $T_{\lambda}(\mu)$, the schematic in Figure 2 describes the changes to its scaffolding.

3.3. Filling pairs of curves using Dehn twists

THEOREM 5. Let α and γ be a filling pair of curves on S_{g}. Then, α and $T_{\gamma}^{p}(\alpha)$ also fills S_{g}.

Figure 3. Surgery of the curves to obtain $T_{\lambda}(\mu)$

Figure 4. The scaffolding for $T_{Q_{1}}\left(Q_{4}\right)$, where Q_{1} and Q_{4} are from example in figure 6 and the shaded region is a rectangle of the scaffolding

Proof. Let $i(\gamma, \alpha)=k, K:=\{1,2, \ldots, k\}, K_{-1}:=\{1,2, \ldots, k-1\}$ and $K_{2-2 g}:=$ $\{1,2, \ldots, k+2-2 g\}$. We prove the theorem for $p=1$. For $p>1$, the proof remains as it is with just the arguments for k copies of γ replaced by $p k$ copies of γ. The terminologies in the previous section can be adjusted accordingly to account for the $p k$ copies of γ instead of k copies of γ. This is because the following proof relies on the idea of the surgery of curves, α and copies of γ, to obtain $T_{\gamma}(\alpha)$. And the surgery to obtain $T_{\gamma}^{p}(\alpha)$ is similar to this surgery.

Since α and γ fill S_{g}, there is a 4 -tuple $\left(\alpha, \gamma, R_{\alpha}, R_{\gamma}\right)$ which is amenable to Dehn twist in special position. Let $T_{\gamma}(\alpha)$ be in special position w.r.t to α and γ. We denote the disks of transformation of $T_{\gamma}(\alpha)$ by A_{i} for $i \in K$. By an isotopy we assume the curve α to be disjoint from $T_{\gamma}(\alpha) \backslash A_{i}$ for $i \in K$ and in each A_{i} we further assume the arc $\alpha_{i}:=\alpha \cap A_{i}$ to be a straight line segment below the segment connecting $v_{i, 0}$ and $u_{i, k+1}$ (below μ_{i} in Figure 2).

Let $\left(\left\{g_{i}\right\}_{i \in K}, \alpha\right)$ be the scaffolding for $T_{\gamma}(\alpha)$. For $j \in K_{-1}$, one of the components of $S_{g} \backslash\left(g_{j} \cup g_{j+1}\right)$ is an annulus, G_{j}. The core curve of the annuli G_{j} is isotopic in S_{g} to λ. Any component of $G_{j} \backslash \alpha$ is a 4-gon which we call as a rectangle

Figure 5. The shaded portion represent the portions of B along two edges corresponding to γ in F_{p}. The complement of the shaded portion in F_{p} is F_{p}^{\prime}.
of the scaffolding for $T_{\gamma}(\alpha)$. Figure 4 shows an example of such a rectangle of the scaffolding. The disks $A_{i}, i \in K$, further divide each rectangle of the scaffolding into three components. There is a unique $i \in K$ such that A_{i} and A_{i+1} intersect a given rectangle of the scaffolding. Denote a rectangle of the scaffolding formed out of G_{j} with its arcs of α lying in A_{i} and A_{i+1} by $B_{i, j}$. Denote the sub-rectangles $B_{i, j} \cap A_{i}$, by $C_{i, j}^{\prime}$ and $B_{i, j} \cap A_{i+1}$, by $C_{i+1, j}^{\prime \prime}$. Also let $B_{i, j}^{\prime}:=B_{i, j} \backslash\left(C_{i, j}^{\prime} \cup C_{i+1, j}^{\prime \prime}\right)$. Let

$$
B=\cup_{i=1}^{k} \cup_{j=1}^{k-1} B_{i, j} .
$$

$S_{g} \backslash(\alpha \cup \gamma)$ has $k+2-2 g$ disk components by Euler characteristic considerations. If F_{p} is a disk component of $S_{g} \backslash(\alpha \cup \gamma)$, for some $p \in K_{2-2 g}$, then $F_{p}^{\prime}:=F_{p} \backslash B$ is a single disk as B intersects any F_{p} only in disks which contain a boundary arc of F_{p}, namely arcs of γ. Figure 5 is a schematic of possible portions of B in F_{p}. The components of $S_{g} \backslash\left(\alpha \cup g_{1} \cup \cdots \cup g_{k}\right)$ comprise of $k(k-1)$ rectangles of the scaffolding for $T_{\gamma}(\alpha)$, namely $B_{i, j}$ where $i \in K, j \in K_{-1}$, and $k+2-2 g$ even sided polygonal discs, namely F_{p}^{\prime}, where $p \in K_{2-2 g}$. Let $F_{p}^{\prime \prime}$ denote $F_{p}^{\prime} \backslash R_{\alpha}$ for $p \in K_{2-2 g}$.

For each $j \in K$ let $w_{i, j}:=\theta_{i, j} \cap \alpha_{i}$. For each $i \in K$ and $j \in K_{-1}$, let $D_{i, j}^{\prime \prime}$ be the parallelogram with vertices $v_{i, j}, v_{i, j+1}, w_{i, j}$ and $w_{i, j+1}$ and $D_{i, j+1}^{\prime}$ be the parallelogram with vertices $w_{i, j}, w_{i, j+1}, u_{i, j+1}, u_{i, j+2}$. In each disk A_{i}, for $i \in K$, there is a pentagon, $P_{i, 1}$, which is above α_{i} and bounded by the lines $\theta_{i, 0}, \partial R_{\gamma}$, $\alpha_{i}, \theta_{i, 1}$ and the line segment of $\partial_{+} R_{\alpha}$ between $u_{i, 1}$ and $u_{i, 2}$. Likewise, in each disk A_{i}, for $i \in K$, there is a triangle, $T_{i, k+1}$, which is bounded by the lines $\alpha_{i}, \theta_{i, k}$ and ∂R_{γ}. Figure 6 shows a schematic before and after the transformation to the disk A_{i}; the figure to the left shows the rectangles $C_{i, 1}^{\prime}$ and $C_{i, k}^{\prime \prime}$ and the figure on the right shows $P_{i, 1}$ and $T_{i, k+1}$.

Figure 6. The disk of transformation for $T_{\gamma}(\alpha)$: the figure on the left shows the portion of the scaffolding for $T_{\gamma}(\alpha)$; the figure on the right shows the pentagon $P_{i, 1}$, the triangle $T_{i, k+1}$ and the parallelograms formed due to α_{i} and $T_{\gamma}(\alpha)$

Figure 7. A schematic of R_{α} (figure on the left) and after (figure on the right) the Dehn twist

Figure 7 shows a schematic of R_{α} before and after the transformation to the scaffolding of $T_{\gamma}(\alpha)$. The shaded region in the figure on the left shows $C_{i, j}^{\prime}$ and $C_{i, j-1}^{\prime \prime}$ for some indices i, j. The shaded region in the figure on the right shows $D_{i, j}^{\prime}$ and $D_{i, j-1}^{\prime \prime}$ for some indices i, j.

For $i \in K$, note that all the disks A_{i}, occur in some sequence in the annulus R_{α} when moving along α. So, a disk A_{i} is connected to some disk A_{j} on the left and to some other disk A_{p} on the right by a single arc of $\alpha \backslash R_{\gamma}$, for some distinct indices $i, j, p \in K$. The schematic for two disks A_{i} and A_{j}, for some $i, j \in K$, which are connected via a single arc of $\alpha \backslash R_{\gamma}$ and an arc of $T_{\gamma}(\alpha) \backslash R_{\gamma}$ is as shown in the Figure 8. Note that this schematic is generic since for every $j \in K$, there is a distinct $i \in K$ such that A_{j} occurs to the left of A_{i}, in the sense mentioned above.

Figure 8 is a schematic of a portion of Figure 7 in which the following are the possibilities of how the edges corresponding to $\partial\left(R_{\gamma}\right)$ of the adjacent discs of transformation match up, namely $\partial_{+} R_{\gamma}$ and $\partial_{+} R_{\gamma}$ face each other, $\partial_{+} R_{\gamma}$ and $\partial_{-} R_{\gamma}$ face each other or $\partial_{-} R_{\gamma}$ and $\partial_{-} R_{\gamma}$ face each other. In this schematic, we see that the pentagon $P_{i, 1}$ of the disk A_{i} is connected to the triangle $T_{j, k+1}$ of A_{j} via an arc of $\alpha \backslash R_{\gamma}, \omega_{i, j}$, and an arc of $T_{\gamma}(\alpha), \eta_{i, j}$. The disk, $R_{i, j}$ outside R_{γ} bounded

Figure 8. Two adjacent disks of transformation in R_{α}
by $\omega_{i, j}, \eta_{i, j}$ and two arcs of ∂R_{γ}, will be called a conduit. Equip the conduit with the Euclidean metric and assume that $R_{i, j}$ is a rectangle with two opposite sides $\omega_{i, j}$ and $\eta_{i, j}$. Now $P_{i, 1} \cup R_{i, j} \cup T_{j, k+1}$ is a 4 -gon bounded by four arcs viz. (i) $\theta_{i, 0} \cup \eta_{i, j} \cup \theta_{j, k}$, (ii) $\alpha_{j} \cup \omega_{i, j} \cup \alpha_{i}$, (iii) $\theta_{i, 1}$ and (iv) the arc of $\partial_{+} R_{\alpha}$ between $u_{i, 1}$ and $u_{i, 2}$. This protracted 4 -gon will be denoted by $D_{i, 1}^{\prime}$.

Let $S^{\prime}=S_{g} \backslash R_{\alpha}$. The components of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ are the components of $S^{\prime} \backslash T_{\gamma}(\alpha)$ and the components of $R_{\alpha} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ glued at the boundary of R_{α}. Since the changes to the scaffolding of $T_{\gamma}(\alpha)$ is restricted to R_{α}, the components of $S^{\prime} \backslash T_{\gamma}(\alpha)$ are precisely the disc components of $S^{\prime} \backslash\left(g_{1} \cup \cdots \cup g_{k}\right)$.

The components of $S^{\prime} \backslash\left(g_{1} \cup \cdots \cup g_{k}\right)$ are $B_{i, j}^{\prime}, i \in\{1,2 \ldots k\}, j \in K_{-1}$, along with disks $F_{p}^{\prime \prime}, p \in K_{2-2 g}$, as explained above. The components of $R_{\alpha} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ will be examined using the schematic Figure 8 of a portion of R_{α}. There are four kinds of regions in R_{α}. The upper disk regions, like R_{1} in the schematic Figure 8, the lower disk regions, like R_{2} in the schematic Figure 8, and the disks $D_{i, j}^{\prime}, D_{i, j}^{\prime \prime}$, $i \in K, j \in K_{-1}$. Figure 8 shows how the upper and lower disk regions are glued to disks $F_{p}^{\prime \prime}$ for $p \in K_{2-2 g}$. For each $p \in K_{2-2 g}$, after gluing the lower disk regions and the upper disk regions to the respective disks $F_{p}^{\prime \prime}$, we get disks which we denote by $F_{p}^{\prime \prime \prime}$. We know that $F_{p}^{\prime \prime \prime}$ is a disk because the upper and the lower disk regions are disjoint, except for the points $w_{i, j}$ on the boundary and share a single arc of ∂R_{α} with a unique $F_{p}^{\prime \prime}$. For each $p \in K_{2-2 g}$, we call $F_{p}^{\prime \prime \prime}$ to be the modified disk corresponding to the initial disk F_{p}.

For each $i \in K$ and $j \in K_{-1}$, the line segment of $\partial_{+} R_{\alpha}$ between $u_{i, j} u_{i, j+1}$ is the common boundary of $C_{i, j}^{\prime}$ and $D_{i, j}^{\prime}$. Likewise, for each such i, j, the line segment of $\partial_{-} R_{\alpha}$ between $v_{i, j} v_{i, j+1}$ is the common boundary of $C_{i, j}^{\prime \prime}$ and $D_{i, j}^{\prime \prime}$. So, for such i, j, when considering the components of $S_{g} \backslash\left(\alpha \cup g_{1} \cup \cdots \cup g_{k}\right)$ the rectangular core $B_{i, j}^{\prime}$ is connected to $C_{i, j}^{\prime}$ along the boundary segment $u_{i, j} u_{i, j+1}$ and to $C_{i+1, j}^{\prime \prime}$ along the boundary segment $v_{i+1, j} v_{i+1, j+1}$, whereas when considering the components of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$, the rectangular core $B_{i, j}^{\prime}$ is connected to $D_{i, j}^{\prime}$ along the boundary segment $u_{i, j} u_{i, j+1}$ and $D_{i+1, j}^{\prime \prime}$ along the boundary segment $v_{i+1, j}$
$v_{i+1, j+1}$. So the rectangles of the scaffolding for $T_{\gamma}(\alpha), B_{i, j}$, which are components of $S_{g} \backslash\left(\alpha \cup g_{1} \cup \cdots \cup g_{k}\right)$, after the transformation in the disks of transformation for $T_{\gamma}(\alpha)$ result in disks $E_{i, j}:=B_{i, j}^{\prime} \cup D_{i, j}^{\prime} \cup D_{i+1, j}^{\prime \prime}$ which now are components of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$. For each $p \in K_{2-2 g}, F_{p}^{\prime \prime \prime}$ is a disk as seen earlier. The components of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ are precisely the disks $F_{p}^{\prime \prime \prime}$ and $E_{i, j}$ where $p \in K_{2-2 g}, i \in K$ and $j \in K_{-1}$. This proves that the components of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ are all disks and hence proving $d\left(\alpha, T_{\gamma}(\alpha)\right) \geq 3$.

Thus, we have that α and $T_{\gamma}(\alpha)$ fills S_{g}.

CHAPTER 4

DISTANCE 4 CURVES ON $\mathcal{C}\left(S_{g}\right)$

In this chapter we produce examples of pairs of curves which are at a distance 4 apart on $\mathcal{C}\left(S_{g}\right)$ using Dehn twists and a pair of curves which are at a distance 3 apart. Let α and β be a pair of curves on S_{g} such that $d(\alpha, \beta)=3$. In section 4.1, we label a few components of an annular neighbourhood of β cut along $T_{\beta}(\alpha) \cup \alpha$. In section 4.2, we prove that $d\left(\alpha, T_{\beta}^{p}(\alpha)\right)=4$, for $p \in \mathbb{N}$. Using this result, in subsection 4.2.1, we show that $i_{\min }(g, 4) \leq(2 g-1)^{2}$. In subsection 4.2 .2 , we prove that the geodesic we consider between α and $T_{\beta}(\alpha)$ is an initially efficient geodesic.

- Unless otherwise defined, we will adhere to the notations used in the previous chapters.

4.1. Terminology

Let α and γ be a filling pair of curves on S_{g}. Thus, $d(\alpha, \gamma) \geq 3$. Let $i(\gamma, \alpha)=k$, $K:=\{1,2, \ldots, k\}, K_{-1}:=\{1,2, \ldots, k-1\}$ and $K_{2-2 g}:=\{1,2, \ldots, k+2-2 g\}$. Since α and γ fill S_{g}, there is a 4-tuple $\left(\alpha, \gamma, R_{\alpha}, R_{\gamma}\right)$ which is amenable to Dehn twist in special position. Let $T_{\gamma}(\alpha)$ be in special position w.r.t to α and γ. We denote the disks of transformation of $T_{\gamma}(\alpha)$ by A_{i} for $i \in K$.

The components of $R_{\gamma} \backslash T_{\gamma}(\alpha)$ are disks and their boundary consists of two arc segments of $T_{\gamma}(\alpha)$ and one each of $\partial_{+} R_{\gamma}$ and $\partial_{-} R_{\gamma}$. We call these disks as rectangular tracks. The word tracks derives its motivation from how these tracks appear in R_{γ}. Figure 1 shows R_{γ} and rectangular tracks inside R_{γ}.

Since $i(\alpha, \gamma)=k$, there are k components of $\alpha \cap R_{\gamma}$. Every component of $\alpha \backslash T_{\gamma}(\alpha)$ is either contained in R_{γ} or, has a sub-arc which is contained in R_{γ}. For any $i \in K, \alpha_{i}$ intersects the rectangular tracks.

Let $i_{0} \in K$. In the schematic Figure $6, A_{i_{0}}$ has exactly $k+1 \operatorname{arcs}$ of $T_{\gamma}(\alpha)$. Call $\theta_{i_{0}, 0}$ to be the leftmost arc of $A_{i_{0}}$ and $\theta_{i_{0}, k}$ to be the rightmost arc of $A_{i_{0}}$.

Figure 1. The rectangular tracks shown inside the annulus R_{γ}

Figure 2. A rectangular track T_{i} along with arcs of α_{i} in it

Let us consider one component of $T_{\gamma}(\alpha) \cap R_{\gamma}$, call it $\rho_{i_{0}}$, which intersects $A_{i_{0}}$ in its leftmost arc. This $\rho_{i_{0}}$ intersects $A_{i_{0}}$ precisely in the arcs $\theta_{i_{0}, 0}$ and $\theta_{i_{0}, k}$ and it intersects A_{j} for every $j \in K \backslash\left\{i_{0}\right\}$ in the arcs $\theta_{j, m}$ where $m=\left(j-i_{0}\right)(\bmod k)$. We constructed $T_{\gamma}(\alpha)$ in special position w.r.t. α and γ with the motivation that $\rho_{i_{0}}$ will intersect $A_{i_{0}}$ and A_{j} in exactly these arcs.

From this discussion it is clear that $\rho_{i_{0}}$ intersects each α_{j}, for $j \in K$, exactly once. It is also clear that, for $j \in K$, the points of $\rho_{i_{0}} \cap \alpha_{j}$ lie on $\rho_{i_{0}}$ in the order $\alpha_{i_{0}+1}, \ldots, \alpha_{k}, \alpha_{1}, \ldots, \alpha_{i_{0}-1}, \alpha_{i_{0}}$ when $\rho_{i_{0}}$ is traversed from $\partial_{+} R_{\gamma}$ to $\partial_{-} R_{\gamma}$. We now consider two arc components, $\rho_{i_{0}}$ and $\rho_{i_{0}+1}$, of $T_{\gamma}(\alpha) \cap R_{\gamma}$ and the rectangular track, $T_{i_{0}}$, which is enclosed by these two components in R_{γ}. We equip this rectangular track $T_{i_{0}}$ with the Euclidean metric so that the boundary $\operatorname{arcs} \rho_{i_{0}}, \rho_{i_{0}+1}$, and the arcs of $T_{i_{0}} \cap \partial R_{\gamma}$ are all straight lines and so that $T_{i_{0}}$ is a rectangle. We refer to $T_{i_{0}} \cap \partial_{+} R_{\gamma}$ as the left end of the rectangle and $T_{i_{0}} \cap \partial_{-} R_{\gamma}$ as the right end of this rectangular track. We can draw the arcs of α_{j}, for $j \in K$, as straight line segments in the rectangular tracks $T_{i_{0}}$. Figure 2 shows a schematic of T_{i} where $i \in K$.

From this schematic, at both the left and right end of this rectangular track T_{i}, a_{i} is a common boundary to a triangle and a pentagon. We call α_{i} as the starting arc of this rectangular track T_{i}.

Figure 3 shows the two possible schematics of A_{i} as pictured in R_{γ}.

Figure 3. A_{i} shown inside R_{γ} in the two possible ways : the figure on the left shows α_{i} oriented from top to bottom; the figure on the right shows α_{i} oriented from bottom to top

For either of the two possible cases observed in Figure 3, a portion of one of the two pentagons of T_{i} appears in the A_{i} which is between α_{i} and $\partial_{+} R_{\alpha}$, where α_{i} is the starting arc of this track. We call this pentagon the upper pentagon of the rectangular track T_{i}, owing to the viewpoint that $\partial_{+} R_{\alpha}$ is the upper boundary of R_{α}. A portion of the other pentagon of T_{i} appears in A_{i} which is between α_{i} and $\partial_{-} R_{\alpha}$. We call this pentagon the lower pentagon of the rectangular track. Likewise, we define the upper triangle and the lower triangle of a rectangular track T_{i}.

4.2. Distance 4 curves

THEOREM 6. If α and γ be two curves on S_{g} with $d(\alpha, \gamma)=3$, then $d\left(\alpha, T_{\gamma}(\alpha)\right)=$ 4.

Proof. Let $\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}$ be a geodesic from the vertex ν_{0} corresponding to α to the vertex ν_{3} corresponding to γ in $\mathcal{C}\left(S_{g}\right)$. Let $T_{\gamma}\left(\nu_{0}\right)$ be the vertex in $\mathcal{C}\left(S_{g}\right)$ corresponding to $T_{\gamma}(\alpha)$. The existence of the path $T_{\gamma}\left(\nu_{0}\right), T_{\gamma}\left(\nu_{1}\right), T_{\gamma}\left(\nu_{2}\right)=\nu_{2}, \nu_{1}$, ν_{0} gives that $d\left(T_{\gamma}(\alpha), \alpha\right) \leq 4$

Let $\bar{\gamma} \in \Gamma$ as in the statement of the Theorem 4 . We prove that $d(\bar{\gamma}, \alpha) \geq 3$ by showing that $\bar{\gamma}$ and α fill S_{g}. By Theorem 4, this will imply that $d\left(T_{\gamma}(\alpha), \alpha\right) \geq 4$. We prove the theorem in 2 steps : in step 1 we perform an isotopy of $\bar{\gamma}$ such that the arcs of $\bar{\gamma} \backslash \alpha$ in R_{γ} replicate the arcs of $\gamma \backslash \alpha$. In step 2 we prove that any $\bar{\gamma} \in \Gamma$ fills S_{g} with α and thus $d(\bar{\gamma}, \alpha) \geq 3$.
Step 1 : To prove that α and $\bar{\gamma}$ fill S_{g} it suffices to show that there exists a nonempty, finite subset of arcs of $\bar{\gamma} \backslash \alpha, \Upsilon$, such that $\left(S_{g} \backslash \alpha\right) \backslash \Upsilon$ are discs. We show the existence of Υ by carefully choosing an isotopic copy of $\bar{\gamma}$. We obtain this isotopic copy of $\bar{\gamma}$ by first performing an isotopy, I_{1}, a finite number of times such that the end points of each of the arcs of $\bar{\gamma}$ in R_{γ} are essential and not boundary reducible.

We then define a second isotopy, I_{2}, which when performed a finite number of times will ensure that every intersection point of $\bar{\gamma}$ and α lie in R_{γ}. We then define an isotopy, I_{3}, called the normalization move, which proves that there is an arc of $\bar{\gamma}$ in $R_{\gamma}, \bar{\gamma}_{0}$, such that the arcs $\bar{\gamma}_{0} \backslash \alpha$ act like the arcs of $\gamma \backslash \alpha$ in $S_{g} \backslash \alpha$.

It can be observed that $i(\bar{\gamma}, \alpha) \neq 0$ because if $\bar{\gamma}$ is disjoint from both α and $T_{\gamma}(\alpha)$ then we would get a path of length 2 , namely $\alpha, \bar{\gamma}, T_{\gamma}(\alpha)$. Using the triangular inequality and the fact that $\operatorname{Mod}\left(S_{g}\right)$ acts on $\mathcal{C}\left(S_{g}\right)$ by isometries, we have that $d(\bar{\gamma}, \gamma) \geq d\left(T_{\gamma}(\alpha), \gamma\right)-d\left(\bar{\gamma}, T_{\gamma}(\alpha)\right)=d\left(T_{\gamma}(\alpha), T_{\gamma}(\gamma)\right)-d\left(\bar{\gamma}, T_{\gamma}(\alpha)\right)=3-1=$ 2. Thus, we also conclude that $i(\bar{\gamma}, \gamma) \neq 0$. Since $\bar{\gamma}$ intersects γ, it intersects R_{γ}. It cannot be completely contained in R_{γ} because every simple closed curve contained in an annulus bounds a disk or is isotopic to the core curve of the annulus. Since neither of these is true, it follows that that $\bar{\gamma}$ intersects R_{γ} in arcs. Since $i\left(\bar{\gamma}, T_{\gamma}(\alpha)\right)=0$, each component of $\bar{\gamma} \cap R_{\gamma}$ has to be completely contained in one of the rectangular tracks described by $T_{\gamma}(\alpha)$. Such a component arc of $\bar{\gamma}$ could either be boundary reducible or essential in R_{γ}.

We consider an isotopy I_{1} of $\bar{\gamma}$, as follows: In the case that a component arc of $\bar{\gamma}$ in R_{γ} is boundary reducible in R_{γ}, we can perform the boundary reduction of $\bar{\gamma}$ preserving its minimal intersection position with α and $T_{\gamma}(\alpha)$. This is possible because an arc of $\bar{\gamma}$ which is boundary reducible in R_{γ} and is contained in the disk T_{i} will bound a bigon with one boundary arc of R_{γ} in T_{i}. Also, since $\bar{\gamma}$ was already in minimal intersection position with α, it does not bound bigons with the arcs α_{j} inside T_{i}. Call the isotopy of $\bar{\gamma}$ which reduces all the boundary-reducible arcs of $\bar{\gamma} \cap R_{\gamma}$ as I_{1}. After the isotopy I_{1}, we can assume that all the arcs of $\bar{\gamma}$ in R_{γ} are essential. We know that there is at-least one component of $\bar{\gamma} \cap R_{\gamma}$ which is an essential arc of R_{γ} as $\bar{\gamma}$ cannot be disjoint from R_{γ}. By the hypothesis that $i(\bar{\gamma}, b) \leq 1$ for $b \subset \alpha \backslash T_{\gamma}(\alpha)$ each rectangular track can contain at-most one component of $\bar{\gamma} \cap R_{\gamma}$.

Next, we describe an isotopy I_{2} of $\bar{\gamma}$ such that all the points of $\bar{\gamma} \cap \alpha$ will lie inside R_{γ} and so that no new boundary reducible arc components of $\bar{\gamma} \cap R_{\gamma}$ are introduced and $\bar{\gamma}$'s minimal intersection position with α and $T_{\gamma}(\alpha)$ is retained. To this end, suppose that a point of $\bar{\gamma} \cap \alpha$ lies outside R_{γ}.

Following the construction of the disk $D_{i, 1}^{\prime}$ described above using Figure 8, we see that the upper pentagon of the rectangular track T_{i} is connected to the upper triangle of the rectangular track T_{j} via a conduit $R_{i, j}$ where $i, j \in K$ are such that A_{j} is to the left of A_{i} in R_{α} as in schematic 8.

If a point of $\bar{\gamma} \cap \alpha, x_{0}$, lies outside R_{γ}, then it has to lie on $\omega_{i, j}$ for some i and j such that $i, j \in K, i \neq j$. We now refer to the dotted line in Figure 4. Since the intersection of $\bar{\gamma}$ and α is transverse, an arc of $\bar{\gamma}$, call it δ lies on the two sides of the conduit $R_{i, j}$, one inside and one outside $R_{i, j}$. The endpoint P of the arc δ

Figure 4. The isotopy I_{2} moving points of $\bar{\gamma} \cap \alpha$ into R_{γ}
inside $R_{i, j}$ is also the endpoint of some other arc of $\bar{\gamma}$ as $\bar{\gamma}$ is a closed curve. If P connects to an arc of $\bar{\gamma}$ lying in the upper triangular region of the track T_{j}, then an essential arc δ_{1} of $\bar{\gamma} \cap R_{\gamma}$ lies in T_{j} with its endpoint Q on ∂R_{γ} in the upper triangle of T_{j} so that δ, the arc $P Q$ and δ_{1} together form a bigon with α contradicting the minimal intersection position of $\bar{\gamma}$ with α. So, P connects to an arc of $\bar{\gamma}$ in the upper pentagon in the track T_{i} as is the dotted line in Figure 4. Consider an isotopy I_{2} which slides the point x_{0} onto α_{i}. The image of the arc component of $\bar{\gamma} \cap R_{\gamma}$ which is in T_{i}, under I_{2} has its endpoint in the lower triangle of T_{i} and the image of x_{0} lies in R_{γ}. A schematic for this isotopy I_{2} is shown in Figure 4.

After finitely many such isotopies, we can now assume that all the points of $\bar{\gamma} \cap \alpha$ lie inside R_{γ}. Now consider an isotopy I_{3} of $\bar{\gamma}$ as follows: If any of the components of $\bar{\gamma} \cap R_{\gamma}$ has its endpoint on the boundary of the upper triangle of T_{j}, for some $j \in K$, then by the above discussion, $\bar{\gamma}$ cannot intersect $\omega_{i, j}$ or $\eta_{i, j}$, for some $i \in K$ such that the arcs of T_{i} and T_{j} forms the opposite sides of a conduit $R_{i, j}$. So $\bar{\gamma} \cap R_{i, j}$ is an arc $M N$ which has its endpoints $M \in T_{j}$ and $N \in T_{i}$ on ∂R_{γ}. Further, since $\bar{\gamma}$ is a closed curve, $\bar{\gamma} \cap T_{i}$ is an arc with its endpoint as N such that N necessarily lies in the upper pentagon of T_{i}. Conversely, if any of the components of $\bar{\gamma} \cap R_{\gamma}$ has its endpoint, z_{0}, on the boundary of the upper pentagon of T_{i}, then it should be connected to an arc, g, of $\bar{\gamma}$ in the conduit $R_{i, j}$. Note that the endpoints, z_{0}, z_{0}^{\prime} of g are on ∂R_{γ}. There exists an arc component of $\bar{\gamma} \cap R_{\gamma}$ lying in T_{j} such that z_{0}^{\prime} is on the boundary of the upper triangle of T_{j}, as the dotted line in Figure 5 shows. If any such arc g of $\bar{\gamma}$ exists, consider an isotopy, I_{3}, of g such that the image, $I_{3}(g)$, lies outside $R_{i, j}$. A schematic of this is Figure 5.

The component of $\bar{\gamma} \cap R_{\gamma}$ in T_{j} now has an endpoint on the boundary of the lower pentagon of T_{j} and the component of $\bar{\gamma} \cap R_{\gamma}$ in T_{i} has an endpoint on the boundary of the lower triangle of T_{i}. Also the image of $\bar{\gamma} \cap \alpha$ under I_{3} moves a point of $\bar{\gamma} \cap \alpha$ from the boundary of the upper traingle of T_{j} to the boundary of the lower pentagon of T_{i}. We call I_{3} to be a normalization move on $\bar{\gamma}$. After finitely many normalization moves performed on $\bar{\gamma}$, wherever applicable, we can assume that every component of $\bar{\gamma} \cap R_{\gamma}$ is contained in a rectangular track T_{i} for some

Figure 5. A schematic showing the normalization move, the isotopy I_{3}

Figure 6. The portion of $\bar{\gamma}$ in rectified position inside T_{i}

Figure 7. Schematic showing H_{1} and γ_{1} in R_{γ}
$i \in K$ such that the endpoints of that component lie on the boundary of the lower triangle and the lower pentagon of T_{i}. So a schematic of every component of $\bar{\gamma} \cap R_{\gamma}$ inside T_{i} is as in Figure 6.

After these isotopies I_{1}, I_{2}, I_{3} of $\bar{\gamma}$, we say that $\bar{\gamma}$ is in a rectified position. We now prove that $\bar{\gamma}$ in rectified position and α fill S_{g}. From now on we assume that $\bar{\gamma}$ is in a rectified position.

Step 2 : For $i \in K$, let H_{i} be the rectangular component of $R_{\gamma} \backslash\left(\cup_{i \in K} \alpha_{i}\right)$ containing the arcs a_{i} and a_{i+1} on its boundary. Each of these H_{i} contains a unique segment, γ_{i}, of the core curve γ. The schematic 7 shows H_{1} and γ_{1} for instance.

Figure 8. The figure on the left shows disks J and J^{\prime} formed by cutting along γ_{i-1}; the figure on the right shows the new disks formed when $J \cup J^{\prime}$ are cut along $\bar{\gamma}_{1}$

We say that an arc, g of $\bar{\gamma}$ covers γ_{i} if $g \subset H_{i}$ has its end points on α_{i} and α_{i+1} and g is isotopic in H_{i} to γ_{i} through arcs whose end points stay on α_{i}, α_{i+1}. Since γ and α form a filling pair, the set of essential arcs, $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ fill $S_{g} \backslash \alpha$. It follows that $\bar{\gamma}$ fills S_{g} along with α if segments of $\bar{\gamma} \backslash \alpha$ cover γ_{i} for all i with $i \in K$.

Since $\bar{\gamma}$ is in rectified position, each component of $\bar{\gamma} \cap R_{\gamma}$ already covers all γ_{i} except one as in Figure 6. More precisely, if a component of $\bar{\gamma} \cap R_{\gamma}$ is in a rectangular track T_{i}, then $\bar{\gamma}$ covers every γ_{j} where j is such that $1 \leq j \leq k$ and $j \neq i-1$. So, if $\bar{\gamma} \cap R_{\gamma}$ has two distinct components, then each component has to lie in T_{i} for distinct i and hence $\bar{\gamma}$ covers γ_{j} for $j \in\{1,2, \ldots k\}$. We conclude that $\bar{\gamma}$ and α fill S_{g} in this case. Now it remains to show that if there is a single component of $\bar{\gamma} \cap R_{\gamma}$, which is an essential arc of R_{γ} and is contained in some rectangular track T_{i}, then $\bar{\gamma}$ and α fill S_{g}. As in the previous case, $\bar{\gamma}$ covers every γ_{j} where j is such that $1 \leq j \leq k$ and $j \neq i-1$. The components of $S_{g} \backslash\left(\alpha \cup_{1 \leq j \leq k, j \neq i-1} \gamma_{j}\right)$ will be disks except possibly one which could be a cylinder. This can be seen as follows. Since α and γ fill S_{g}, the components of $S_{g} \backslash \alpha \cup_{1 \leq j \leq k} \gamma_{j}$ are disks. Each segment of $\gamma_{j} \backslash \alpha$ for $j \in\{1,2, \ldots, k\}$ contributes to two distinct edges of a component J_{0} or two separate components J, J^{\prime} of $S_{g} \backslash \alpha \cup_{1 \leq j \leq k} \gamma_{j}$.

Let $P_{1}:=\bar{\gamma} \cap \alpha_{i}$ and $P_{2}:=\bar{\gamma} \cap \alpha_{i-1}$ be points in T_{i} which appear on the unique component of $\bar{\gamma} \cap R_{\gamma}$. Let [P_{1}, P_{2}] represent the arc of $\bar{\gamma}$ in R_{γ} with endpoints P_{1} and P_{2} and $\bar{\gamma}_{1}:=\bar{\gamma} \backslash\left[P_{1}, P_{2}\right] . \bar{\gamma}_{1}$ is contained in all the components of $S_{g} \backslash$ $\alpha \cup_{1 \leq j \leq k, j \neq i-1} \gamma_{j}$ which contain the arcs α_{i-1} and α_{i} on their boundary. We know that there is at-least one such component because γ_{i-1} is also such an arc which joins α_{i-1} to α_{i}. If γ_{i-1} is the boundary of J, J^{\prime}, then it would have been an arc which connected α_{i-1} on one disk to α_{i} on another disk. Note that both α_{i} and α_{i-1} are also boundary arcs of both J and J^{\prime}. So, we would find P_{1} on the disk containing α_{i} and P_{2} on the disk containing α_{i-1}. When we join J and J^{\prime} along γ_{i-1} we get a disk where $\bar{\gamma}_{1}$ is an arc from P_{1} to P_{2} intersecting γ_{i-1}. Cutting along $\bar{\gamma}_{1}$ still yields two different disks. The schematic, Figure 8 shows this situation.

Figure 9. The disk J_{0} glued to itself along γ_{i-1} and cut along $\bar{\gamma}_{1}$

If γ_{i-1} were on the boundary of J_{0} representing two edges of J_{0} then it would have been an arc which connected α_{i-1} to α_{i}. When we glue J_{0} to itself along γ_{i-1}, we get a cylinder, A, where α_{i} and α_{i-1} will be arcs on different boundary components of A. So we would find P_{1} and P_{2} on distinct boundaries of A and hence $\bar{\gamma}_{1}$ would be an essential arc on A. So cutting A along this arc $\bar{\gamma}_{1}$ would yield a disk as shown in the schematic, Figure 9.

In any case, we get disks by cutting $S_{g} \backslash \alpha$ along the arcs of $\bar{\gamma} \backslash \alpha$.
Thus, we have finished our application of the distance ≥ 4 test and we have that $d\left(T_{\gamma}(\alpha), \alpha\right) \geq 4$. This along with the existence of the length 4 path between α and $T_{\gamma}(\alpha)$ proves the theorem.

Theorem 7. If α and γ is a pair of curves on S_{g} with $d(\alpha, \gamma)=3$ then for $p \geq 2, d\left(\alpha, T_{\gamma}^{p}(\alpha)\right)=4$.

Proof. Let $\nu_{0}=\alpha, \nu_{1}, \nu_{2}, \nu_{3}=\gamma$ be a geodesic in $\mathcal{C}\left(S_{g}\right)$. For $p \geq 2$, the existence of the path $T_{\gamma}^{p}\left(\nu_{0}\right), T_{\gamma}^{p}\left(\nu_{1}\right), T_{\gamma}^{p}\left(\nu_{2}\right)=\nu_{2}, \nu_{1}, \nu_{0}$ gives that $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right) \leq 4$.

Let $k=i(\alpha, \gamma)$. $T_{\gamma}^{p}(\alpha)$ is obtained by performing a surgery on $p k$ copies of γ and α similar to the surgery (Figure 3) performed on k copies of γ and α to obtain $T_{\gamma}(\alpha)$.

Since only the k copies of γ in the surgery of $T_{\gamma}(\alpha)$ is changed to $p k$ copies of γ to obtain $T_{\gamma}^{p}(\alpha)$ and as k is arbitrary throughout the definitions and proofs in the previous part, we can prove that $d\left(\alpha, T_{\gamma}^{p}(\alpha)\right) \geq 4$ in exactly the same way as the proof of Theorem 6.
4.2.1. Upper bound for $i_{\min }(g, 4)$. As an application of Theorem 6 we are able to obtain an upper bound for the minimum intersection number for a pair of curves at a distance 4 in $\mathcal{C}\left(S_{g}\right)$.

Corollary 1. For a surface of genus $g \geq 3$, $i_{\min }(g, 4) \leq(2 g-1)^{2}$.
Proof. Aougab and Huang [3] proved that $i_{\text {min }}(g, 3)=2 g-1$ for $g \geq 3$. Now, on S_{g}, for $g \geq 3$, suppose that α and β are two such minimally intersecting curves
with $d(\alpha, \beta)=3$. Then $i\left(\alpha, T_{\beta}(\alpha)\right)=(2 g-1)^{2}$ and by Theorem $6, d\left(\alpha, T_{\beta}(\alpha)\right)=4$. So $i_{\min }(g, 4) \leq(2 g-1)^{2}$.

4.2.2. An initially efficient geodesic.

THEOREM 8. If $\alpha=\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}=\gamma$ is an initially efficient geodesic in $\mathcal{C}\left(S_{g}\right)$ then so is $T_{\gamma}(\alpha), T_{\gamma}\left(\nu_{1}\right), \nu_{2}, \nu_{1}, \alpha$.

Proof. For $p \in K_{2-2 g}$, let $F_{p}^{\prime \prime}$ be the components of $S_{g} \backslash\left\{\alpha, R_{\gamma}\right\}$ as in the proof of Theorem 6. Since the geodesic $\alpha, \nu_{1}, \nu_{2}, \gamma$ is an initially efficient one, each segment of ν_{1} intersects every reference arc in E_{i} at most twice. In particular, arcs of $\partial\left(R_{\gamma}\right)$ that form the edges of E_{i} intersect ν_{1} at most twice. It follows from here that there are at the most two segments of ν_{1} in each rectangular track T_{i} as defined in. A schematic of this is shown in figure 10 . Further, since the interior of a reference arc is disjoint from $\alpha \cup T_{\gamma}(\alpha)$, it is sufficient to check for the initial efficiency of the geodesic, $T_{\gamma}(\alpha), T_{\gamma}\left(\nu_{1}\right), \nu_{2}, \nu_{1}, \alpha$ in the modified disks $F_{p}^{\prime \prime \prime}$, abbreviated F, corresponding to F_{p}, abbreviated E.

Since E and F are homeomorphic to a $2 g$-gon. Without loss of generality assume E and F to be a regular Euclidean regular polygon with $2 g$ sides. Starting at any segment of α in E, we label the edge as α_{1}. Label the edges of E in a clockwise direction, starting at α_{1} as $\gamma_{1}, \alpha_{2}, \gamma_{2}, \ldots, \gamma_{g}$. Let $S^{\prime}=S_{g} \backslash R_{\gamma}$. Since the components of $S^{\prime} \backslash\{\alpha, \gamma\}$ and $S^{\prime} \backslash\left\{\alpha, T_{\gamma}(\alpha)\right\}$ are the same, it follows that for every edge, $a_{j_{0}}$ in F corresponding to α, there exists a unique $i_{0} \in\{1, \ldots, g\}$ such that $a_{j_{0}} \subset \alpha_{i_{0}}$. Index the edges, $a_{j_{0}}$ of F such that $j_{0}=i_{0}$. Label the edge of $T_{\gamma}(\alpha)$ in F between a_{i} and a_{i+1} as t_{i}. Let ω be a reference arc in F with end points on t_{p} and t_{q} for some $p, q \in\{1, \ldots, g\}$. Suppose to the contrary that $\omega \cap T_{\gamma}\left(\nu_{1}\right) \geq 3$. Then there exists three segments, z_{1}, z_{2}, z_{3} of $T_{\gamma}\left(\nu_{1}\right)$ in F such that $z_{j} \cap \omega \neq \phi$. For $j \in\{1,2,3\}$, let the end points of z_{j} lie on $a_{j_{1}}$ and $a_{j_{2}}$. From our previous discussion on Dehn twist and figure 11, there exists arcs of ν_{1} in E with end points on $\gamma_{j_{1}}$ and $\gamma_{j_{2}}$ for all $j \in\{1,2,3\}$. Consider a line segment, ω^{\prime} in E from an interior point of a_{p} to an interior point of a_{q}. Then ω^{\prime} is a reference arc for the triple, α, ν_{1}, γ and $\omega^{\prime} \cap \nu_{1} \geq 3$. This contradicts that $\alpha, \nu_{1}, \nu_{2}, \gamma$ is an initially efficient geodesic. Hence, $\omega \cap T_{\gamma}\left(\nu_{1}\right) \leq 2$ for any choice of reference arc, ω for the triple $T_{\gamma}(\alpha), T_{\gamma}\left(\nu_{1}\right), \alpha$.

Since $T_{\gamma}(\alpha), T_{\gamma}\left(\nu_{1}\right), \nu_{2}, \nu_{1}, \alpha$ is already a geodesic we have that $d\left(T_{\gamma}\left(\nu_{1}\right), \alpha\right)=3$. This gives that $T_{\gamma}\left(\nu_{1}\right)$ is an initially efficient geodesic of distance 4 from $T_{\gamma}(\alpha)$ to α.

Figure 10. There can be at-most two distinct segments of $T_{\gamma}\left(\nu_{1}\right)$ in any rectangular component of $S_{g} \backslash\left(\alpha \cup T_{\gamma}(\alpha)\right)$ in R_{γ}

Figure 11. Initial efficiency of $T_{\gamma}\left(a_{1}\right)$ follows from the initial efficiency of a_{1}

CHAPTER 5

SCALING CURVES

Let γ be an arbitrary curve on S_{g}. In this chapter, sections 5.1 and 5.5 characterises certain sets of arcs that fill $S_{g} \backslash \gamma$. Let α and β be curves on S_{g} with $d(\alpha, \beta)=4$. In section 5.2 , we describe particular components of the annular neighbourhood of β cut along α. We observe some of the properties of these components in section 5.4. In section 5.3 , we construct curves on S_{g}, which we call the scaling curves, from arcs of $\beta \backslash \alpha$ and prove that these curves are at distance at least 3 from α.

- The objective of this chapter is to introduce a few terminologies and certain properties of scaling curves that will aid us in analysing the values of $d\left(\alpha, T_{\alpha}(\beta)\right)$ in the following chapter. The work in this chapter is part of the preprint [16].

5.1. Filling system of arcs

Let α and β be a filling pair of curves on S_{g}. Let $\beta^{\prime} \in \beta \backslash \alpha$. Let D be the polygonal disc obtained by gluing the two components of $S_{g} \backslash(\alpha \cup \beta)$ along β^{\prime}. Let b_{1} be an arc in D such that b_{1} and β^{\prime} have their end points on the same arcs of $\alpha \cap D$. We say that b_{1} covers β^{\prime} if b_{1} is isotopic to β^{\prime} by an isotopy of arcs in D having end points on the same arcs of $\alpha \cap D$ as β^{\prime} and b_{1}.

Let \mathcal{A} be a non-empty set of essential arcs on $S_{g} \backslash \alpha$ such that the end points of every arc in \mathcal{A} lies on the boundary. We call \mathcal{A} a filling system of arcs of $S_{g} \backslash \alpha$ if the components of $\left(S_{g} \backslash \alpha\right) \backslash \mathcal{A}$ are discs.

Lemma 1. Let α and β be a pair of filling curves on S_{g}. Let $i(\alpha, \beta)=n$ and the components of $\beta \backslash \alpha$ be $\left\{\beta_{i}: 1 \leq i \leq n\right\}$. Let Γ be a non-empty set of essential arcs on $S_{g} \backslash \alpha$. If for every $i \in\{1, \ldots, n\}$, there exists $g_{i} \in \Gamma$ such that g_{i} covers β_{i}, then Γ is a filling system of arcs of $S_{g} \backslash \alpha$.

Proof. Consider the components of $\left(S_{g} \backslash \alpha\right) \backslash \cup\left\{g_{i}\right\}_{1 \leq i \leq n}$. These components coincide with the components of $\left(S_{g} \backslash \alpha\right) \backslash \beta$ and hence, are discs. Since $\cup_{1 \leq i \leq n}\left\{g_{i}\right\} \subset$ Γ, the components of $\left(S_{g} \backslash \alpha\right) \backslash \Gamma$ are also discs.

For any curve α on S_{g}, we denote the annular neighbourhood of α as R_{α}. Let $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ be a geodesic in $\mathcal{C}\left(S_{g}\right)$. Let $\left(a_{0}, a_{4}, R_{a_{0}}, R_{a_{4}}\right)$ be amenable to Dehn twist in special position. The following lemma 2 states that for the purpose of cutting $S_{g} \backslash a_{0}$ into discs, not every arc of $a_{4} \backslash a_{0}$ is necessary. We can forgo any one of the arcs of $a_{4} \backslash a_{0}$.

Lemma 2. Let b be a component of $a_{4} \backslash a_{0}$. Then $\left(a_{4} \backslash a_{0}\right) \backslash b$ is a filling system of arcs of $S_{g} \backslash a_{0}$.

Proof. Each component of $a_{4} \backslash a_{0}$ is common to two components of $S_{g} \backslash\left(a_{0} \cup\right.$ $\left.a_{4}\right)$. Let the components of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ that share the edge corresponding to b be D_{1} and D_{2}.

We first show that $D_{1} \neq D_{2}$. On the contrary, if $D_{1}=D_{2}$ let p be the central curve of the annulus obtained by gluing D_{1} along b. Being in minimal position with a_{0} and a_{4}, p forms an essential curve on S_{g}. Since $i\left(p, a_{0}\right)=0$ and $i\left(p, a_{4}\right)=1$, we get a path of distance 3 between a_{0} and a_{4} via p, which is not possible.

Call the disc obtained by gluing D_{1} and D_{2} along b as D. Components of $S_{g} \backslash\left(\left(a_{4} \backslash a_{0}\right) \backslash b\right)$ comprise of the components of $\left(S_{g} \backslash\left(a_{0} \cup a_{4}\right)\right) \backslash\left(D_{1} \cup D_{2}\right)$ and D. Since each component is a disc, it follows that $\left(a_{4} \backslash a_{0}\right) \backslash b$ forms a filling system of $S_{g} \backslash a_{0}$.

5.2. Buckets

Let α be a curve on S_{g} which intersects μ and λ minimally. Any arc in $\alpha \cap R_{\lambda}$ with end points on distinct components of $\partial\left(R_{\lambda}\right)$ is called a strand of α in R_{λ}. If α is such that $i(\alpha, \lambda)=1$ and $\alpha \cap \mu \subset R_{\lambda}$ then α is called a standard single strand curve.

Given an ordered set of points on μ, we now give a shorthand notation to represent the arcs of μ between these points. Let μ be with a preferred orientation and $x_{1}, \ldots, x_{m \geq 3}$ be distinct points on μ. Considering μ as the embedding μ : $[0,1] \longrightarrow S_{g}$ with $\mu(0)=\mu(1)$, we say that x_{1}, \ldots, x_{m} are along the orientation of μ if $\mu^{-1}\left(x_{i}\right)<\mu^{-1}\left(x_{i+1}\right)$ for $i \in\{1, \ldots, m-1\}$. We use $\mu_{\left[x_{i}, x_{i+1}\right]}$ to denote the undirected arc of a with end points x_{i}, x_{i+1} and which has no other x_{j} 's on it. Since $\mu_{\left[x_{i}, x_{i+1}\right]}$ is undirected, we set $\mu_{\left[x_{i}, x_{i+1}\right]}=\mu_{\left[x_{i+1}, x_{i}\right]}$. For $i \in\{1, \ldots, m\}$, let b_{i} be curves or essential arcs on S_{g} such that $b_{i} \cap \mu=x_{i}$. When the context is clear, we will interchangeably use $\mu_{\left[x_{i}, x_{i+1}\right]}$ and $\mu_{\left[b_{i}, b_{i+1}\right]}$.

Select some orientation for a_{0} and a_{4}. Let $a_{0} \cap a_{4}=\left\{w_{i}: i \in K\right\}$ be ordered along the orientation of a_{4}. For $i \in K$, let a_{0}^{i} be the arc of $a_{0} \cap R_{a_{4}}$ containing

Figure 1. Top bucket T_{i} and bottom bucket B_{i}
w_{i}. Let the two component curves of $\partial\left(R_{a_{4}}\right)$ be $\partial_{+}\left(R_{a_{4}}\right)$ and $\partial_{-}\left(R_{a_{4}}\right)$ such that a_{0}^{1} with the induced orientation from a_{0} goes from $\partial_{+}\left(R_{a_{4}}\right)$ to $\partial_{-}\left(R_{a_{4}}\right)$. There is a natural orientation of $\partial_{+}\left(R_{a_{4}}\right)$ and $\partial_{-}\left(R_{a_{4}}\right)$ induced by the orientation of a_{4}. For $i \in K$, let $u_{i}=a_{0}^{i} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $v_{i}=a_{0}^{i} \cap \partial_{-}\left(R_{a_{4}}\right)$. We call the rectangle in $R_{a_{4}}$ with boundaries $a_{\left[w_{i}, w_{i+1}\right]}, \partial_{+}\left(R_{a_{4}}\right)_{\left[u_{i}, u_{i+1}\right]}, a_{0_{\left[u_{i}, w_{i}\right]}}$ and $a_{0_{\left[u_{i+1}, w_{i+1}\right]}}$ as a top bucket and denote it by T_{i}. Similarly, we call the rectangle in $R_{a_{4}}$ with boundaries $a_{4_{\left[w_{i}, w_{i+1}\right]}}, \partial_{-}\left(R_{a_{4}}\right)_{\left[v_{i}, v_{i+1}\right]}, a_{0_{\left[w_{i}, v_{i}\right]}}$ and $a_{0_{\left[w_{i+1}, v_{i+1}\right]}}$ as a bottom bucket and denote it by B_{i}. Figure 1 gives a schematic of a top and a bottom bucket. We note that each top and bottom bucket is contained in a unique component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. Let H be a top (or, bottom) bucket and let O be the component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ containing H. We then call H to be a top (or, bottom) bucket in O.

5.3. Scaling curves

Let D be a component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. Let T_{p}, T_{q} be top buckets in $R_{a_{4}}$ for some $p, q \in K, p<q$ such that $\left(T_{p} \cup T_{q}\right) \subset D$. Let $\gamma^{\prime \prime}$ be an arc in $\cup_{i=p+1}^{q-1} T_{i}$ parallel to a_{4} with end points on $a_{0}^{p+1} \cap T_{p+1}$ and $a_{0}^{q} \cap T_{q-1}$. Let γ^{\prime} be an arc in the interior of D with end points $\left(\gamma^{\prime \prime} \cap a_{0}\right) \cap D$. Let γ be the curve obtained by concatenation of the arcs γ^{\prime} and $\gamma^{\prime \prime}$. A schematic of γ is shown in figure 2 . We call γ a scaling curve from T_{p} to T_{q}. Since $R_{a_{4}}$ is a cylinder, we can similarly define a scaling curve from T_{q} to T_{p} as follows. Let $\gamma_{1}^{\prime \prime}$ be an arc in $\cup_{i=q+1}^{p-1} T_{i}$ parallel to a_{4} with end points on $a_{0}^{q+1} \cap T_{q+1}$ and $a_{0}^{p} \cap T_{p-1}$. Let γ_{1}^{\prime} be an arc in the interior of D with end points $\left(\gamma_{1}^{\prime \prime} \cap a_{0}\right) \cap D$. Then the curve obtained by concatenation of the arcs γ^{\prime} and $\gamma^{\prime \prime}$ is a scaling curve from T_{q} to T_{p}. By replacing top buckets with their bottom buckets counterpart, we can define scaling curve from B_{p} to B_{q} and B_{q} to B_{p}.

Figure 2. A schematic of the scaling curve γ from T_{p} to T_{q}. The dashed arc is a schematic of γ^{\prime}.

Lemma 3. Scaling curves are not null-homotopic.

Proof. We prove the lemma when γ is a scaling curve from a top bucket T_{p} to $T_{q}, p<q$ and $\left(T_{p} \cup T_{q}\right) \subset D$ for some component D of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. A similar proof follows if γ is a scaling curve from a bottom bucket B_{p} to $B_{q}, p<q$ by replacing T_{p}, T_{q} with B_{p}, B_{q}, respectively, in the proof below. Similar proofs work for scaling curves from T_{q} to T_{p} and B_{q} to B_{p}. We show that γ is not nullhomotopic by considering a minimal representative of γ along with a_{0} and showing that this representative has non-zero intersections with a_{0}. We obtain this minimal representative of γ and a_{0} by removing bigons in iterations.

Suppose if possible that γ and a_{0} are not in minimal position. Since there exists an isotopic copy of γ such that $\gamma^{\prime \prime}$ overlaps with $a_{4_{\left[w_{p+1}, w_{q-1}\right]}}$ if γ and a_{0} are not in minimal position then a bigon is formed by γ^{\prime} and a subarc of a_{0}. This subarc of a_{0} is a component of $a_{0} \backslash a_{4}$ because otherwise, if there is a point of $a_{0} \cap a_{4}$ on the boundary of this bigon then as $\gamma \cap a_{4}=\phi$ we get a bigon between a_{0} and a_{4} which contradicts the minimality of a_{0}, a_{4}. The closed component of $a_{0} \backslash a_{4}$ that contains this subarc also contains the arcs $T_{p} \cap a_{0_{\left[u_{p+1}, w_{p+1}\right]}}$ and $T_{q} \cap a_{0_{\left[u_{q-1}, w_{q-1}\right]}}$. Thus, $\left(T_{p+1} \cup T_{q-1}\right) \subset D_{1}$ for some component D_{1} of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. We remove this bigon between γ and a_{0} to obtain an isotopic copy of γ. This isotopic copy of γ is in turn a scaling curve from T_{p+1} to T_{q-1}. By abuse of notation, we denote this isotopic copy as γ.

If we have that γ is not in minimal position with a_{0}, then by similar arguments as in the previous paragraph, $T_{p+1} \cap a_{0_{\left[u_{p+2}, w_{p+2}\right]}}$ and $T_{q-1} \cap a_{0_{\left[u_{q-2}, w_{q-2}\right]}}$ are contained in the same closed component of $a_{0} \backslash a_{4}$. Thus, we have that D_{1} is a rectangle. As previously, we remove this bigon between γ and a_{0} and consider denote the new isotopic copy which is also a scaling curve from T_{p+2} to T_{q-2} by γ. Further, we have that $\left(T_{p+2} \cup T_{q-2}\right) \subset D_{2}$ for some component D_{2} of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$.

Continuing in a similar iterative manner as in the above paragraphs, if γ and a_{0} are not in minimal intersection position, then we claim that there is a positive integer l with $l<\left\lceil\frac{q-p}{2}\right\rceil-1$ such that
(1) $T_{p+l} \cup T_{q-l}$ is contained in the one component D_{l} of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$
(2) $T_{p+l} \cap a_{4}$ and $T_{q-l} \cap a_{4}$ are separated by a single edge corresponding to a_{0} in D_{l}
The fact that there exists l with $l \leq\left\lceil\frac{q-p}{2}\right\rceil-1$ is immediate as there are at most $\left\lceil\frac{q-p}{2}\right\rceil$ pairs of buckets of the form T_{p+i} and T_{q-i} between T_{p} and T_{q} in $R_{a_{4}}$. We first show that if we assume $l=\left\lceil\frac{q-p}{2}\right\rceil-1$ along with hypothesis (1) and (2) then we arrive at the following contradictions. If $q-p$ is odd then we have that T_{p+l} and T_{q-l} are adjacent top buckets. But if T_{p+l} and T_{q-l} are adjacent top buckets then a_{0} has a self intersection, which is absurd. If $q-p$ is even then $p+l+2=q-l$. But then the $a_{0} \cap D_{l}$ arc containing the end points w_{p+l+1} and w_{q-l} encloses a disc with $a_{4_{\left[w_{p+l+1}, w_{q-l}\right]}}$, thus giving a bigon between a_{0} and a_{4}. This contradicts that a_{0} and a_{4} are in minimal position.

We thus have that the scaling curve from T_{p+l} to T_{q-l} intersects a_{0} minimally and is isotopic to the given γ.

As in the proof of lemma 3, whenever we consider a scaling curve we will work with an isotopic copy of it which is in minimal position with a_{0}, a_{4} and $T_{a_{4}}\left(a_{0}\right)$.

Corollary 2. Scaling curves fill with a_{0}.
Proof. From the construction of a scaling curve, $\gamma, \gamma \cap a_{4}=\phi$ and hence $d\left(\gamma, a_{0}\right) \geq 3$. Thus, a_{0} and γ fill S_{g}.

REMARK 3. If a_{0} and a_{4} intersect $i_{\min }(g, 4)$ number of times then any scaling curve are at a distance 3 from a_{0}.

5.4. Properties of buckets

The following lemmas explain a few observations regarding the buckets in $R_{a_{4}}$ and the components of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ that contain them.

From corollary 2 and the fact $i_{\min }(g, 3) \geq 4([3])$, we have the following corollary regarding the placement in $R_{a_{4}}$ of the top buckets which are subset of the same disc of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. A similar version of corollary 3 holds true for bottom buckets.

Corollary 3. Let D be a component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ and T_{p}, T_{q} be distinct top buckets in $R_{a_{4}}$ for some $p, q \in K, p<q$ such that $\left(T_{p} \cup T_{q}\right) \subset D$. Then $|q-p| \geq 4$.

Lemma 4. For any $i \in K, T_{i}$ and B_{i} can't be subsets of the same component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$.

Proof. This follows directly from the proof of lemma 2 by considering $b=$ $a_{4_{[i, i+1]}}$.

Choice of $\delta:$ Considering $T_{a_{4}}\left(a_{0}\right)$ to be in special position w.r.t. a_{0} and a_{4}, there exists a representative of a_{0} such that the possible schematics of the strands of $T_{a_{4}}\left(a_{0}\right)$ in $R_{a_{4}}$ are as in figure 3 . The details to the choice of such a representative of a_{0} can be found in the proof of 5 . Any path between a_{0} and $T_{a_{4}}\left(a_{0}\right)$ is of the form $T_{a_{4}}\left(a_{0}\right), \delta, c, \Theta, a_{0}$ where $\delta \in B_{1}\left(T_{a_{4}}\left(a_{0}\right)\right), c \in B_{1}(\delta)$ and Θ is a non-trivial path. We now give an algorithm to select a representative of δ such that for each strand of δ in $R_{a_{4}}$ there exists $i \in K$ such that the end points of the strand lies on $\partial_{+}\left(R_{a_{4}}\right)_{\left[u_{i}, u_{i+1}\right]}$ and $\partial_{-}\left(R_{a_{4}}\right)_{\left[v_{i}, v_{i+1}\right]}$. Applying $T_{a_{4}}$ to a geodesic between a_{0} and a_{4}, we get that $d\left(a_{4}, T_{a_{4}}\left(a_{0}\right)\right)=4$. Since $\delta \in B_{1}\left(T_{a_{4}}\left(a_{0}\right)\right)$, we have that $d\left(\delta, a_{4}\right) \geq 3$. From [3], we have that $i_{\min }(g, 3) \geq 4$. Thus $i\left(\delta, a_{4}\right) \geq 4$, i.e. there are at least 4 strands of δ in $R_{a_{4}}$. Consider a representative of δ which is in minimal position with $a_{0}, a_{4}, T_{a_{4}}\left(a_{0}\right), \partial_{+}\left(R_{a_{4}}\right)$ and $\partial_{-}\left(R_{a_{4}}\right)$. We can choose a representative of δ such that $\delta \cap a_{0} \subset R_{a_{4}}$ by performing the isotopy I_{2} described in the step 1 of theorem 6 . An intuitive picture of this isotopy is to finger push the points in $\delta \cap a_{0}$ which don't lie in $R_{a_{4}}$, along a_{0}, into $R_{a_{4}}$. This "finger pushing" doesn't disturb the minimal position of δ and $T_{a_{4}}\left(a_{0}\right)$. The strands of δ in $R_{a_{4}}$ attained after performing the above isotopies can be one of the four possible schematics as in figure 3. If a strand of δ in $R_{a_{4}}$, say δ^{\prime}, is as in figure 3 a or 3 b , we can perform an isotopy of δ such that the isotopic image of δ^{\prime} is as in figure 3c or 3d and the isotopy doesn't disturb the other strands of δ. This isotopy of δ is defined as I_{3} in the step 1 of theorem 6 . The isotopic copy thus obtained is said to be " δ in a rectified position".

Let δ_{1} be the point on $\partial_{+}\left(R_{a_{4}}\right)$ such that $\delta_{1}=\delta \cap \partial_{+}\left(R_{a_{4}}\right)_{\left[u_{1}, u_{2}\right]}$ and that one of the arcs $\partial_{+}\left(R_{a_{4}}\right) \backslash\left\{u_{1} \cup \delta_{1}\right\}$ doesn't contain any points of $\delta \cap \partial_{+}\left(R_{a_{4}}\right)$. If $m=i\left(a_{4}, \delta\right)$, let $\delta \cap \partial_{+}\left(R_{a_{4}}\right)=\left\{\delta_{i}: 1 \leq i \leq m\right\}$ such that the $\delta_{1}, \delta_{2}, \ldots, \delta_{m}$ are along the orientation of $\partial_{+}\left(R_{a_{4}}\right)$. Let the strand of δ containing the point δ_{i} be δ^{i}.

Let δ^{r}, δ^{s} be any two distinct strands of δ in $R_{a_{4}}$ such that δ^{r} and δ^{s} start in distinct top buckets, say T_{r} and T_{s}, and that there exists a component of $\partial_{+}\left(R_{a_{4}}\right) \backslash$ $\left(\delta^{r} \cup \delta^{s}\right)$ that doesn't contain any points of $\partial_{+}\left(R_{a_{4}}\right) \cap \delta$ other than $\partial_{+}\left(R_{a_{4}}\right) \cap \delta^{r}$ and $\partial_{+}\left(R_{a_{4}}\right) \cap \delta^{s}$. We call the rectangular component of $R_{a_{4}} \backslash\left(\delta^{r} \cup \delta^{s}\right)$ which doesn't contain any other strand of δ as a δ-track in $R_{a_{4}}$ and denote it by $\delta^{r, s}$. The boundary of $\delta^{r, s}$ comprises of the $\operatorname{arcs} \delta^{r}, \delta^{s}, \partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{r}, \delta^{s}\right]}$ and $\partial_{-}\left(R_{a_{4}}\right)_{\left[\delta^{r}, \delta^{s}\right]}$. Further, assuming $r<s$, we call the set $\bigcup_{i=r}^{s}\left(T_{i} \cup B_{i}\right)$ as inside of $\delta^{r, s}$.

Lemma 5. Let O be a $2 n$-gon disc of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ with $n \geq 4$. For any deltatrack in $R_{a_{4}}, \delta^{r, s}$, there exists at-least one top bucket or, bottom bucket in O that is not in the inside of $\delta^{r, s}$.

Figure 3. The possible starting and ending points of strands of δ in $R_{a_{4}}$

Proof. Let us suppose on the contrary that there exists a δ-track $\delta^{r, s}$ such that all the top and bottom buckets in O are inside $\delta^{r, s}$. Without loss of generality, assume the top and bottom buckets containing the end points of δ^{r} are T_{r} and B_{r}, respectively. Similarly, for δ^{s} the top and bottom buckets are T_{s} and B_{s}, respectively. If every bucket in O are of the form T_{i} or, B_{i} for $r<i<s$ then, we get a scaling curve γ such that δ, γ, a_{4} is a path. This contradicts $d\left(\delta, a_{4}\right) \geq 4$.

Also, since every bucket of O is inside $\delta^{r, s}$, any arc of $\delta \cap O$ are either an arc that covers $a_{4_{[i, i+1]}}$ for $r<i<s$ or, an arc, say δ^{\prime}, with end points $\delta^{r} \cap a_{4}$ and $\delta^{s} \cap a_{4}$. It follows along with lemma 4 that either T^{r}, T^{s} or, T^{r}, B^{s} or, B^{r}, T^{s} or, B^{r}, B^{s} are buckets of O. We show that all these possibilities, if they exist, lead to a contradiction. The following is a combinatorial proof and we give it for the case O is an octagon. As n increases, the proof remains intact with only the possibility of certain cases being redundant.

If T^{r}, T^{s} are buckets in O, figure 4 shows the distinct possible δ^{\prime}. If T^{r}, B^{s} are buckets in O, figure 5 shows the distinct possible δ^{\prime}. If B^{r}, B^{s} are buckets in

Figure 4. Both the dotted line and the dashed line are possibilities for δ^{\prime} if T_{r} and T_{s} are as in the schematic.

O, figure 6 shows the distinct possible δ^{\prime}. In the possible cases of figure 4,5 and 6a, by the pigeon hole principle, either component of $O \backslash \delta^{\prime}$ contains either two top or, bottom buckets. Thus, if these cases occur, we can construct a scaling curve γ such that δ, γ, a_{4} is a path, which is absurd. For figure 6 b , if both the components of $O \backslash \delta^{\prime}$ contains a top bucket, because S_{g} is an orientable surface, we will be able to find a non-trivial curve γ with properties as in the above cases. Here, $\gamma \cap O$ lies in the component of O containing the vertices w_{r+1} and w_{s}.

If B^{r}, T^{s} are buckets in O, the arguments are similar to the case of T^{r} and B^{s} being buckets of O.

5.5. Almost filling arcs

Suppose we have a filling system of arcs of $S_{g} \backslash a_{0}$ and there is another set of arcs on $S_{g} \backslash a_{0}$ that covers all the arcs in the former filling system of arcs except

(A)

(в)

Figure 6

Figure 7. A schematic of \mathcal{I} with $\left(z, z^{\prime}\right)$ almost covering b.
for one. In the following we explore a sufficient condition on the latter system of arcs which ensures that it forms a filling system of arcs. To prove this condition we take the aid of the fact that a_{0} and a_{4} fill S_{g}.

Let \mathcal{I} be some non-rectangular component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ and $a_{0}^{J_{1}}, a_{0}^{J_{2}}$ be two distinct edges of \mathcal{I}, where $J_{1}, J_{2} \in K$. Consider an arc, b, in \mathcal{I} with end points on $a_{0}^{J_{1}}$ and $a_{0}^{J_{2}}$. Let I be one of the two components of $\mathcal{I} \backslash J$ such that I contains an edge a_{0}^{J} for some $J \in K$. By our assumption, there exists an edge, $a_{0}^{J_{3}}$, in I such that $a_{0}^{J_{2}} \cap I$ and $a_{0}^{J_{3}}$ are adjacent in the polygon I. Consider arcs, z and z^{\prime}, in I such that the end points of z are $a_{0}^{J_{1}} \cap I, a_{0}^{J_{3}}$ and the endpoints of z^{\prime} are $a_{0}^{J_{2}}, a_{0}^{J_{3}}$. Clearly, z^{\prime} covers the a_{4} edge in I adjacent to $a_{0}^{J_{2}} \cap I$ and $a_{0}^{J_{3}}$. We call such a pair of $\operatorname{arcs}\left(z, z^{\prime}\right)$ to almost cover b. Figure 7 gives a schematic of $\left(z, z^{\prime}\right)$.

Lemma 6. Let a_{0} and a_{4} be curves on S_{g} with $d\left(a_{0}, a_{4}\right)=4$. Let κ be another curve on S_{g} such that a_{0} and κ fill S_{g}. Let Γ be a set of essential arcs on $S_{g} \backslash a_{0}$.

If Γ consists of arcs that covers all but one arc of $\kappa \backslash a_{0}$ and almost covers the remaining arc of $\kappa \backslash a_{0}$, then Γ forms a filling system of arcs of $S_{g} \backslash a_{0}$.

Proof. Let $g, g^{\prime} \in \Gamma$ and x be the component of $\kappa \backslash a_{0}$ such that $\left(g, g^{\prime}\right)$ almost cover x. Let $\left\{g_{j}\right\}_{j \in J} \subset \Gamma$ be the arcs that cover the components of $\left(\kappa \backslash a_{0}\right) \backslash x$. Let \mathcal{I} be the component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ that contains x.

Starting with the components of $\left(S_{g} \backslash a_{0}\right) \backslash a_{4}$, we can obtain the components of $\left(S_{g} \backslash a_{0}\right) \backslash \kappa$ by gluing the components of $\left(S_{g} \backslash a_{0}\right) \backslash a_{4}$ along the components of $a_{4} \backslash a_{0}$ and cutting along the components of $\kappa \backslash a_{0}$. In the components $\left(S_{g} \backslash\left(a_{0} \cup a_{4}\right)\right) \backslash \mathcal{I}$, the action of cutting along the components of $\kappa \backslash a_{0}$ coincides with the action of cutting along $\left\{g_{j}\right\}_{j \in J}$.

Let I and I^{\prime} be the two components of $\mathcal{I} \backslash x$ such that $\left(g \cup g^{\prime}\right) \subset I$. In \mathcal{I}, the action of gluing along x is such that it separates the a_{4}-edges of \mathcal{I} into two sets i.e. $\left(a_{4} \backslash a_{0}\right) \cap I$ and $\left(a_{4} \backslash a_{0}\right) \cap I^{\prime}$. Let G_{1}, G_{2} and G_{3} be the components of $\mathcal{I} \backslash\left(g \cup g^{\prime}\right)$. From the schematic in figure 7, we can see that the components of $\mathcal{I} \backslash\left(g \cup g^{\prime}\right)$ can be named such that $I^{\prime} \subset G_{1}, G_{2} \subset I$ and $G_{3} \subset I$. Since, the components of $\left(S_{g} \backslash a_{0}\right) \backslash(\kappa \backslash x)$ and the components of $\left(S_{g} \backslash a_{0}\right) \backslash \cup_{j \in J} g_{j}$ are the same, we have that the components of $\left(S_{g} \backslash\left(a_{0} \backslash \cup_{j \in J} g_{j}\right) \backslash\left(g \cup g^{\prime}\right)\right.$ will be discs if the action of cutting along $g \cup g^{\prime}$ doesn't put an arc from $\left(a_{4} \backslash a_{0}\right) \cap I$ and another from $\left(a_{4} \backslash a_{0}\right) \cap I^{\prime}$ in the same G_{i}. Such a phenomenon never occurs by our definition of almost filling.

chapter 6

We have that $a_{0}, a_{1}, a_{2}, a_{3}=T_{a_{4}}\left(a_{3}\right), T_{a_{4}}\left(a_{2}\right), T_{a_{4}}\left(a_{1}\right), T_{a_{4}}\left(a_{0}\right)$ is a path of length 6 in $\mathcal{C}\left(S_{g}\right)$. Existence of a path of length 6 between $T_{a_{4}}\left(a_{0}\right), a_{0}$ and theorem 5 gives that

$$
4 \leq d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right) \leq 6
$$

Thus, geodesics between a_{0} and $T_{a_{4}}\left(a_{0}\right)$ in $\mathcal{C}\left(S_{g}\right)$ can be of the form $z_{0}=T_{a_{4}}\left(a_{0}\right), z_{1}=$ $\delta, z_{2}=c, \ldots, z_{N}=a_{0}$ for some $N \in\{4,5,6\}$ and $c \in B_{1}(\delta)$. We have that $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right) \geq 5$ if and only if $d\left(a_{0}, c\right) \geq 3$ for all possible $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right) \cap B_{1}(\delta)$. In this chapter we identify the characteristics of δ and c which results in $d\left(c, a_{0}\right) \geq 3$.

The notations and representatives for $a_{0}, a_{4}, T_{a_{4}}\left(a_{0}\right), \delta \in B_{1}\left(T_{a_{4}}\left(a_{0}\right)\right), R_{a_{0}}$ and $R_{a_{4}}$ in this chapter are the same as the ones made in the previous chapter.

Let $k \in \mathbb{N}$. The path $a_{0}, a_{1}, a_{2}, a_{3}=T_{a_{4}}^{k}\left(a_{3}\right), T_{a_{4}}^{k}\left(a_{2}\right), T_{a_{4}}^{k}\left(a_{1}\right), T_{a_{4}}^{k}\left(a_{0}\right)$ in $\mathcal{C}\left(S_{g}\right)$ gives that $d\left(a_{0}, T_{a_{4}}^{k}\left(a_{0}\right)\right) \leq 6$. In [4], the authors showed that $d\left(a_{0}, T_{T_{a_{3}}^{B}\left(a_{0}\right)}^{B}\left(a_{0}\right)\right) \geq 6$ for some large enough constant B. We replicate their arguments to show that $d\left(a_{0}, T_{a_{4}}^{k}\left(a_{0}\right)\right) \geq 6, \forall k \geq K$ for some large enough constant K. We will be using the notations as introduced in section 2.7. For any curve γ, we have that $d_{\gamma}\left(\alpha, T_{\gamma}^{N}(\alpha)\right) \geq N-2$. Choose a large enough constant K such that

$$
d_{a_{4}}\left(a_{0}, T_{a_{4}}^{K}\left(a_{0}\right)\right) \geq K-2>M
$$

By theorem 2, any geodesic, g, between a_{0} and $T_{a_{4}}^{K}\left(a_{0}\right)$ has to pass through the one neighbourhood of a_{4}. Suppose for g, the node p lies in the one neighbourhood of
a_{4}. Then,

$$
\begin{aligned}
d\left(a_{0}, T_{a_{4}}^{K}\left(a_{0}\right)\right) & =d\left(a_{0}, p\right)+d\left(p, T_{a_{4}}^{K}\left(a_{0}\right)\right) \\
& \geq\left(d\left(a_{0}, a_{4}\right)-1\right)+\left(d\left(T_{a_{4}}^{K}\left(a_{4}\right), T_{a_{4}}^{K}\left(a_{0}\right)\right)-1\right) \\
& =6
\end{aligned}
$$

The above arguments follows for all $k \geq K$ and thus $d\left(a_{0}, T_{a_{4}}^{k}\left(a_{0}\right)\right)=6, \forall k \geq K$.

6.1. Representative of c

Since $c \in B_{1}(\delta), d\left(\delta, a_{4}\right) \geq 3$ implies that $c \cap a_{4} \neq \phi$. Thus, there is at least one strand of c in $R_{a_{4}}$. We now perform an isotopy of c so that c is in a favourable position with respect to $a_{0}, a_{4}, \partial\left(R_{a_{4}}\right)$ on S_{g}. The idea behind this isotopy is to get a representative of c such that in $R_{a_{4}}$, the strands of c resemble the "spiral pattern" of the strands of $T_{a_{4}}\left(a_{0}\right)$ and δ. Consider an isotopic copy of c such that c is in minimal position with $\partial_{+}\left(R_{a_{4}}\right), \partial_{-}\left(R_{a_{4}}\right), a_{0}, a_{4}$ and δ. Consider any strand, c^{\prime}, of c in $R_{a_{4}}$. Let $c_{+}=c^{\prime} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $c_{-}=c^{\prime} \cap \partial_{-}\left(R_{a_{4}}\right)$. Let $i_{0} \in K=\{1, \ldots, k\}$ such that c_{+}lies on the boundary of the top bucket $T_{i_{0}}$. There exists $0 \leq l \leq k-1$ such that c_{-}lies on the boundary of the bottom bucket $B_{i_{0}+l}$. Note that since in any top bucket T_{i}, there is an arc of delta with end points on a_{0}^{i} and a_{0}^{i+1}, if $l=0$ then $c^{\prime} \cap a_{0}^{i_{0}+1} \neq \phi$. There exists $i_{1}, i_{2} \in K$ such that c_{+}lies in $\partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{\left.i_{1}, \delta^{i_{2}}\right]}\right.}$. Since $c^{\prime} \cap\left(\delta^{i_{1}} \cup \delta^{i_{2}}\right)=\phi$, we have $i_{1} \leq i_{0}+l \leq i_{2}$. Consider the $\operatorname{arcs} c_{1}, c_{2}$ and c_{3} in the annulus $R_{a_{4}}$ as follows:

- c_{1} starts at c_{+}passing through $T_{i_{0}}, T_{i_{0}+1} \ldots, T_{i_{1}-1}$ and ends in some interior point on $a_{0}^{i_{1}} \cap T_{i_{1}-1}$
- c_{2} is an arc parallel to a_{4} which starts at $c_{1} \cap a_{0}^{i_{1}}$, passes through $T_{i_{1}}$, $T_{i_{1}+1} \ldots, T_{i_{0}+l-1}$ and ends in some interior point on $a_{0}^{i_{0}+l} \cap T_{i_{0}+l}$
- c_{3} is an arc in the rectangle $T_{i_{0}+l} \cup B_{i_{0}+l}$ with end points $c_{2} \cap a_{0}^{i_{0}+l}$ and c_{-}

Let $c^{\prime \prime}$ be the arc obtained by concatenating c_{1}, c_{2} and c_{3}. Note that $c^{\prime \prime}$ intersects a_{4} only once. Since both c^{\prime} and $c^{\prime \prime}$ are arcs in the rectangle with edges $\delta^{i_{1}}$, $\delta^{i_{2}}, \partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{i_{1}}, \delta^{i_{2}}\right]}$ and $\partial_{-}\left(R_{a_{4}}\right)_{\left[\delta^{i_{1}}, \delta^{i_{2}}\right]}$ such that both c^{\prime} and $c^{\prime \prime}$ have end points c_{+}and c_{-}, there is a end point fixing isotopy, \mathcal{I}, of arcs in the rectangle from c^{\prime} to $c^{\prime \prime}$. The isotopy \mathcal{I} can be extended to an isotopy of c to $\left(c \backslash c^{\prime}\right) \cup c^{\prime \prime}$ such that the action on $c \backslash c^{\prime}$ remains identity. By abuse of notation, we denote $\mathcal{I}\left(c^{\prime}\right)$ i.e. $c^{\prime \prime}$ by c^{\prime}. Since the strand of c, c^{\prime}, is arbitrary and \mathcal{I} is identity on $c \backslash c^{\prime}$, we can apply \mathcal{I} to every strand of c to obtain a representative of c which remains in minimal position with $a_{0}, a_{4}, T_{a_{4}}\left(a_{0}\right)$ and δ. We will always consider such a representative of c.

Suppose $i\left(c, a_{4}\right)=k_{0}$. Let $c_{1}, \ldots, c_{k_{0}}$ be the strands of c. Let the end points of c_{i} be in the top bucket $T_{d_{i}}$ and the bottom bucket $B_{d_{i}-l_{i}}$. We call the set $C_{i}=\bigcup_{j=d_{i}-l_{i}}^{d}\left(T_{j} \cup B_{j}\right)$ as the inside of c_{i}. We define $\bigcap_{j=1}^{k_{0}}\left(C_{j}\right)$ as the inside of c.

6.2. Values of $d\left(c, a_{0}\right)$

We now look into the possible values for $d\left(c, a_{0}\right)$ by considering the following two cases depending on the number of strands of c :

Case i : there is a single strand of c in $R_{a_{4}}$
Case ii : there are multiple strands of c in $R_{a_{4}}$
Case i : Suppose there exists a single strand, c^{\prime}, of c in $R_{a_{4}}$. Let $c^{\prime} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie on $\partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{p}, \delta^{q}\right]}$ where $1 \leq p<q \leq m$. We first consider the case when $\delta^{p} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $\delta^{q} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie in the same top bucket then $c^{\prime} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $c^{\prime} \cap \partial_{-}\left(R_{a_{4}}\right)$ lie in T_{e} and B_{e}, respectively, for some $e \in K=\{1, \ldots, k\}$. By lemma 2 we have that c^{\prime} and a_{0} fills.

We now consider the case that $\delta^{p} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $\delta^{q} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie in distinct top buckets. Without loss of generality in the arguments below, we can assume that $\delta^{p} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $\delta^{q} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie in T_{p} and T_{q}, respectively. Let the end points of c^{\prime} be in the top bucket $D=T_{d}$ and the bottom bucket $T=B_{d-l}$ where $r \leq d-l \leq d \leq s$. The set $\bigcup_{i=d-l}^{d}\left(T_{i} \cup B_{i}\right)$ forms the inside of c. For a c with a single strand c^{\prime}, if $c \cap a_{0}=c^{\prime} \cap a_{0}$, we recall from section ?? that such a c is said to be a standard single strand curve. We first show that any c with $i\left(c, a_{4}\right)=1$ is a standard single strand curve.

We recall that if c is such that $i\left(c, a_{4}\right)=1$ and $c \cap a_{0} \subset R_{a_{4}}$ then c is a standard single strand curve. If \mathcal{T} is the disc which contains T, then there exists another top or, bottom bucket T^{*} which contains an endpoint of the arc of $c \cap \mathcal{T}$ containing the subarc $c^{\prime} \cap \mathcal{T}$. If c is a standard single strand curve then $T^{*}=D$. If $T^{*} \neq D$, let \mathcal{D} be the component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ containing D. Let D^{*} be the bucket in \mathcal{D} where the other end of the arc in $\left(c \backslash a_{0}\right) \cap \mathcal{D}$ containing $c^{\prime} \cap D$ lies.

Lemma 7. Let $T^{*} \neq D$. If either T^{*} or, D^{*} are inside c then there exists a representative of c that is a standard single strand curve.

Proof. Without loss of generality, suppose that D^{*} is inside c. We show that D^{*} can't be a top bucket. Similar arguments ensure that whenever T^{*} is inside c, it can't be a bottom bucket. Assume on the contrary that D^{*} is a top bucket. Then the arc of c in D^{*} is either as in figure 1a or, 1 b . In either case, consider γ as shown in figure 1. We observe that in figure 1 , the $\operatorname{arc}\left(\gamma \backslash a_{0}\right) \cap \mathcal{D}$ from D^{*} to D is parallel to the $\operatorname{arc}\left(c \backslash a_{0}\right) \cap \mathcal{D}$ from D^{*} to D. By corollary $2, \gamma$ is essential. Since, γ is inside c it implies that γ is inside $\delta^{p, q}$. Thus, $\gamma \cap \delta=\phi$. Further, by the construction of γ, we have that δ, γ, a_{4} is a path. But this contradicts $d\left(\delta, a_{4}\right) \geq 3$.

Figure 1

We give the isotopy for the case when T^{*} is inside c. Let c_{D} and $c_{T^{*}}$ be any two points on the interior of the $\operatorname{arcs} c \cap D$ and $c \cap T^{*}$, respectively. Let \tilde{c} be the component of $c \backslash\left\{c_{D} \cup c_{T^{*}}\right\}$ that contains the point $c \cap a_{4}$. Let ζ_{1} be the closed $\operatorname{arc} c \backslash \tilde{c}$. Recall that $D=T_{i_{0}}$. If $T^{*}=T_{i_{0}-s}$, let ζ_{2} be the arc passing through $T_{i_{0}-s}, T_{i_{0}-s+1}, \ldots, T_{i_{0}}$ parallel to a_{4} and having end points c_{D} and $c_{T^{*}}$. Let ζ be the curve on S_{g} formed from the concatenation of ζ_{1} and ζ_{2}.

We now show that ζ has to be a trivial curve on S_{g}. By construction, we have $\zeta \cap a_{4}=\phi$. Since ζ_{1} is an arc of $c, \zeta_{1} \cap \delta=\phi$. Since T^{*} is inside c and hence, inside $\delta^{p, q}$, it follows that $\zeta_{2} \cap \delta=\phi$. Thus, $\zeta \cap \delta=\phi$. If ζ is non-trivial it contradicts the fact that $d\left(\delta, a_{4}\right) \geq 3$.

Since ζ is trivial, we have that ζ_{1} is isotopic to ζ_{2} by an isotopy, say L^{\prime}. We perform an isotopy, L, of c such that $L(\tilde{c})=\tilde{c}$ and $L(c \backslash \tilde{c})=L^{\prime}\left(\zeta_{1}\right)=\zeta_{2}$. Thus $L(c)$ is a standard single strand curve on S_{g} whose strand has its end points in T and T^{*}.

A similar proof follows for the case if D^{*} is inside c and T^{*} is outside c by reversing the roles of T^{*} with D^{*} and D with T.

Lemma 8. If c is a standard single strand curve then, there exists a representative of c such that the end points of its strand lies in a top and a bottom bucket of a non-rectangular component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$.

Proof. Let us suppose \mathcal{T} is a rectangle. From the notations defined in the previous section, it follows that the four vertices of \mathcal{T} are w_{d}, w_{d+1}, w_{d-l} and w_{d-l+1}. Since c has a single strand, we have that $i\left(c, a_{4}\right)=1$. As c and a_{0} are in minimal position, the two parallel edges corresponding to the a_{0}-arcs in \mathcal{T} are as follows : one edge is between w_{d-l} and w_{d} and the other edge is between w_{d-l+1} and w_{d+1}. A schematic of the bigon formed between c snd a_{0} if the a_{0}-edges in \mathcal{T} are otherwise is shown in figure 3. We note that, since $\delta \cap c=\phi$, we have that $c \cap \partial_{+}\left(R_{a_{4}}\right)_{[d, d+1]}=\phi$. This means that $D=T_{d}$ and T_{q} don't coincide.

We first show that there exists j such that $d \leq j \leq q$ and T_{j} is a top bucket of some non-rectangular component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$. On the contrary assume that T_{j}

(A)

(B)

Figure 2

Figure 3. The possible bigon formed if the a_{4} edges in \mathcal{T} aren't parallel.
for every $d \leq j \leq q$ is a top bucket of some rectangular disc. Let T_{q} be contained in the rectangular disc \mathcal{R} and let the component of $\delta^{q} \cap \mathcal{R}$ with end points on a_{0} and $\partial_{+}\left(R_{a_{4}}\right)$ be δ_{*}^{q}. Then the a_{4}-edges in \mathcal{R} are $a_{4_{\left[w_{q}, w_{q+1}\right]}}$ and $a_{4_{\left[w_{q-l}, w_{q-l+1}\right]}}$. The union of the rectangular components of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ containing T_{j} for every $d \leq j \leq q$ is again a rectangle, say R. In particular, \mathcal{T} and \mathcal{R} are contained in R. Since the a_{4} edges of \mathcal{T} are in oriented parallely, it gives that the a_{4} edges of R are also oriented parallely. In particular, the a_{4} edges of \mathcal{R} are oriented parallely. As a result $B_{q-l} \subset \mathcal{R}$. Thus the component of $\delta \cap \mathcal{R}$ that contains δ_{*}^{q} has an end point on $a_{4_{\left[w_{q-l}, w_{q-l+1]}\right]}}$, say x. A schematic of the above description is as in figure

Figure 4. A schematic of c

Figure 5. The dotted line is a schematic of $L(c)$
4. Since $\delta^{q} \backslash a_{0}$ covers every arc of $a_{4} \backslash a_{0}$ except $a_{4_{\left[w_{q}, w_{q+1}\right]}}$, there is an arc of δ^{q} parallel to $a_{4_{\left[w_{d-l}, w_{q-l+1}\right]}}$ in $R_{a_{4}}$. Since there are no points of $\delta \cap a_{0}$ on a_{0}^{q-l} between $\delta^{q} \cap a_{0}^{q-l}$ and w_{q-l}, there is no possibility of x joining to any arc of $\delta \backslash a_{0}$. Thus, we have that there is a T_{j} for some $d \leq j \leq q$ such that T_{j} is contained in some non-rectangular component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$.

Consider the non-rectangular disc H such that there is a top bucket $T_{d_{0}}$ of H where $d<d_{0} \leq q$ and T_{j} for $d \leq j<d_{0}$ are top buckets of rectangular discs. Since T_{j} are rectangles for $d \leq j<d_{0}$, we have that B_{d-l+i} for $0 \leq i<d_{0}-d$ are bottom buckets of rectangles. Further, for $0 \leq i<d_{0}-d, T_{d+i}$ and B_{d-l+i} are buckets of the same rectangular disc. Consider an isotopy, L, of c that moves the point $c \cap a_{4}$ along the increasing direction of a_{4} from $a_{4_{\left[w_{d-l}, w_{d-l+1}\right]}}$ to $a_{4_{\left[w_{d_{0}-l}, w_{d_{0}-l+1}\right]}}$ such that $L(c)$ is in minimal position with a_{0} and a_{4}. A schematic of L is shown in figure 5 . Since $T_{d_{0}}$ is in the same δ-track as D and $T, L(c)$ remains to be in minimal position with δ.

As a consequence of lemma 8, we can now assume that the strand of c has its end points in a top and bottom buckets, A_{t}, A_{b} of a non-rectangular disc, say H. If H is a $2 n$-gon with $n \geq 4$, then by lemma 5 there exists either a top or, bottom bucket A of H outside the delta track $\delta^{p, q}$. We will assume that A is a top bucket.

When A is a bottom bucket, similar conclusions can be made about c and a_{0} by interchanging the roles of A_{t} and A_{b} in the following arguments.

Let γ be a scaling curve from A_{t} to A. Let γ^{\prime} be the arc in $\gamma \cap H$ which contains $(\gamma \cap A) \cup\left(\gamma \cap A_{t}\right)$. By corollary 2, we have that γ and a_{0} fill. The construction of γ gives that every arc in $\left(\gamma \backslash a_{0}\right) \backslash \gamma^{\prime}$ is covered by some arc in $c \backslash a_{0}$. Let Λ_{1} and Λ_{2} be the two polygonal components of $S_{g} \backslash\left(a_{0} \cup \gamma\right)$ containing the two edges corresponding to γ^{\prime}. Let Λ be the component formed by gluing Λ_{1} and Λ_{2} along γ^{\prime}. If Λ_{1} and Λ_{2} are distinct, then Λ is a disc. It then follows that the components of $\left(S_{g} \backslash a_{0}\right) \backslash c$ correspond to the components of $\left\{\left(S_{g} \backslash a_{0}\right) \backslash\left(\gamma \backslash \gamma^{\prime}\right)\right\} \cup \Lambda$. Thus, c and a_{0} fill whenever $\Lambda_{1} \neq \Lambda_{2}$. If $\Lambda_{1}=\Lambda_{2}$, then Λ is an annulus. Note that by construction of γ there exists arcs of $a_{4} \backslash a_{0}$ that covers every arc of $\left(\gamma \backslash a_{0}\right) \backslash \gamma^{\prime}$. Consider a representative of a_{4} such that for every arc of $\left(\gamma \backslash a_{0}\right) \backslash \gamma^{\prime}$, the respective arc of $a_{4} \backslash a_{0}$ which covers it also overlaps it. Let \mathcal{P} be the central curve of the annulus Λ. We have that \mathcal{P} will be an essential curve on S_{g}. If not, a_{0} ceases to be connected. Let the two boundary components of Λ be $\partial_{+}(\Lambda)$ and $\partial_{-}(\Lambda)$.

Let Y be a component of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ such that one of the arcs in $\left(a_{4} \backslash a_{0}\right) \cap Y$, say y, has one of its end points on $\partial_{+}(\Lambda)$ and another on $\partial_{-}(\Lambda)$. We have that $\left(a_{0} \cap a_{4}\right) \cap Y \subset \partial(\Lambda)$. Since $\gamma \cap a_{4}=\phi$, the arcs in $\left(a_{4} \backslash a_{0}\right) \cap Y$ are either in the interior of Λ or, in $\partial(\Lambda)$. Thus, Y is a polygon in the annulus Λ such that its edge y is in the interior of Λ. It follows that there is another arc in $\left(a_{4} \backslash a_{0}\right) \cap Y$ with its end points on $\partial_{+}(\Lambda)$ and $\partial_{-}(\Lambda)$.

Since \mathcal{P} is a curve on S_{g} with $\mathcal{P} \cap a_{0}=\phi$ and a_{0} and a_{4} fill S_{g}, there must exist an arc y_{1} in $a_{4} \backslash a_{0}$ such that $y_{1} \cap \mathcal{P} \neq \phi$. As \mathcal{P} is the core curve of Λ, the end points of y_{1} must lie on $\partial_{+}(\Lambda)$ and $\partial_{-}(\Lambda)$. Let Y_{1} be one of the discs of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ containing an edge corresponding to y_{1}. By the argument in the previous paragraph, there exists another arc, y_{2} in $a_{4} \backslash a_{0}$ with end points on $\partial_{+}(\Lambda)$ and $\partial_{-}(\Lambda)$. Let Y_{2}, if exists, be the other disc which contains the other edge corresponding to y_{2}. We apply this process inductively to obtain all the discs Y_{1}, Y_{2}, \ldots, Y_{l} with edges $y_{1}, y_{2}, \ldots, y_{l}$ having end points on distinct components of $\partial(\Lambda)$. If any y_{i} is not inside c we have that an arc of $c \backslash a_{0}$ covers this particular y_{i}. Thus, c and a_{0} fill S_{g}. If all $y_{i}^{\prime} s$ lie inside c, then $T_{a_{4}}\left(a_{0}\right), \delta, c, \mathcal{P}, a_{0}$ is a geodesic of distance 4. If such a geodesic of length 4 exists with $l=4$, a schematic of $R_{a_{4}}$ and $\mathcal{P} \cap R_{a_{4}}$ is as in figure 6 upto renaming of the components Y_{i} for $1 \leq i \leq 4$.

If $i\left(c, a_{4}\right)=1$ but c is not a standard single strand curve, by lemma 7 neither T^{*} nor D^{*} are inside c. Then T^{*} can be either a top or, bottom bucket. If T^{*} is a bottom bucket, consider the scaling curve γ as in 7 a and let the arc in $\gamma \backslash a_{0}$ between T and T^{*} be γ^{\prime}. It can be seen from 7 a that by virtue of the choice of $\gamma, c \backslash a_{0}$ contains a subset of arcs that cover all the arcs in $\left(\gamma \backslash a_{0}\right) \backslash \gamma^{\prime}$. Since T^{*} doesn't lie inside c, there exists a pair of arcs in $c \backslash a_{0}$ that almost covers γ^{\prime}.

Figure 6. A schematic of \mathcal{P} (dotted lines) if Y_{1}, \ldots, Y_{4} occur as above in $R_{a_{4}}$.

Figure 8

Figure 9. A schematic of c^{\prime} and $c^{\prime \prime}$ in $R_{a_{4}}$ when they do not cover every arc of $a_{4} \backslash a_{0}$.

Case ii : Suppose there exists at least two distinct strands, c^{\prime} and $c^{\prime \prime}$, of c in $R_{a_{4}}$. Assume that $c^{\prime} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie on $\partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{p}, \delta q\right]}$ and $c^{\prime \prime} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie on $\partial_{+}\left(R_{a_{4}}\right)_{\left[\delta^{r}, \delta^{s}\right]}$ where $1 \leq r<s \leq m$. If either $\delta^{p} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $\delta^{q} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie in the same top bucket or, $\delta^{r} \cap \partial_{+}\left(R_{a_{4}}\right)$ and $\delta^{s} \cap \partial_{+}\left(R_{a_{4}}\right)$ lie in the same top bucket then by lemma $2, c$ and a_{0} fills S_{g}. The argument is similar to that of case i when the end points of the strand lie in T_{e} and B_{e} for some $e \in K=\{1, \ldots, k\}$. We can thus assume that $p \leq r$.

Suppose $p<r$. If $q<r$, then for every $j \in K$, there exists an arc of $\left(c^{\prime} \cup c^{\prime \prime}\right) \backslash a_{0}$ that covers a_{4}^{j}. Thus, $c \backslash a_{0}$ forms a filling system of arcs in $S_{g} \backslash a_{0}$. If $q=r$, then figure 9 gives the only instance when there exists a $J \in K$ such that a_{4}^{J} isn't covered by an arc of $\left(c^{\prime} \cup c^{\prime \prime}\right) \backslash a_{0}$. It follows from lemma 2 that $c \backslash a_{0}$ forms a filling system of arcs in $S_{g} \backslash a_{0}$.

Suppose $p=r$. We rename c^{\prime} to be the strand of c such that one of the components of $\partial_{+}\left(R_{a_{4}}\right) \backslash\left\{\delta^{p}, c^{\prime}\right\}$ doesn't contain any points of $\partial_{+}\left(R_{a_{4}}\right) \cap c$ in its interior. Let z be the component of $c \backslash R_{a_{4}}$ containing $c^{\prime} \cap \partial_{-}\left(R_{a_{4}}\right)$. Rename $c^{\prime \prime}$ to be the strand of c such that $z \cap c^{\prime \prime} \neq \phi$. We claim that $z \cap c^{\prime \prime}$ lies on $\partial_{+}\left(R_{a_{4}}\right)$.

Let z^{\prime} be the component of $\partial_{-}\left(R_{a_{4}}\right) \backslash z$ such that no points of $\partial_{-}\left(R_{a_{4}}\right) \cap c$ lies in its interior. On the contrary, if $z \cap c^{\prime \prime}$ lies on $\partial_{-}\left(R_{a_{4}}\right)$ then we get that z is isotopic to z^{\prime}. This follows because the curve obtained by concatenating z and z^{\prime} is a curve disjoint from δ and a_{4}. Since $d\left(\delta, a_{4}\right) \geq 3$, this curve has to be non-essential. Therefore, we must have that $z \cap c^{\prime \prime}$ lies on $\partial_{+}\left(R_{a_{4}}\right)$. Let \tilde{z} be the component of $c \backslash R_{a_{4}}$ containing $c^{\prime} \cap \partial_{+}\left(R_{a_{4}}\right)$. A similar argument ensures that the end point of \tilde{z} lies in $\partial_{-}\left(R_{a_{4}}\right)$. Thus, following the naming convention of D, D^{*}, T and T^{*} for the strand c^{\prime} as in case i , we can consider a scaling curve as in figure 8. Similar arguments as in case i gives that c and a_{0} fills S_{g}.

6.3. Conclusion

If $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)=4$, then there exists $\delta \in B_{1}\left(T_{a_{4}}\left(a_{0}\right)\right)$ and corresponding to δ there exists $c \in B_{1}(\delta) \cap B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right)$ such that $a_{0}, p, c, \delta, T_{a_{4}}\left(a_{0}\right)$ is a geodesic. We consider the representatives of δ and c to be the ones as described in section 5.4 and section 6.1, respectively. Then a schematic of a possible p in $R_{a_{4}}$ is as in figure 6. We now describe an equivalent condition for the existence of p in the form of buckets. Given such a curve p, consider the collection \mathcal{Y}_{p} of all top and bottom buckets in $R_{a_{4}}$ containing p. Since $p \cap a_{0}=\phi$, if $T_{i} \in \mathcal{Y}_{p}$ for some $i \in\{1, \ldots, k\}$ then $B_{i} \in \mathcal{Y}_{p}$. Conversely, we define a collection of pairs of top and bottom bucket $\left\{\left(T_{i}, B_{i}\right)\right\}_{i \in I}$ for some $I \subset K=\{1, \ldots, k\}$ where for every T_{i} there exists unique $j \in I$ and $j \neq i$ such that $T_{i} \cup T_{j} \subset Y$ (or, $T_{i} \cup B_{j} \subset Y$) for some component Y of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ as a stack of buckets. We note that given a stack of buckets we can always construct a curve disjoint from a_{0}. The pattern in figure 6 can be described as the inside of c containing a stack of buckets. For any given $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right)$ if the inside of c contains a stack of buckets, we say c has the stacking property. Thus, we conclude that :

Lemma 9. $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)=4$ if and only if there exists $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right)$ such that c has the stacking property.

From our analysis of curves $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right) \cap B_{1}(\delta)$ in section 6.2 , we have that if c is not a standard single strand curve then c and a_{0} always fill. Thus we have the following theorem :

Theorem 9. Let a_{0} and a_{4} be curves on S_{g} such that $d\left(a_{0}, a_{4}\right)=4$ and the components of $S_{g} \backslash\left(a_{0} \cup a_{4}\right)$ doesn't contain any hexagons. Then, $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right) \geq 5$ if and only if there doesn't exist any standard single strand curve $c \in B_{2}\left(T_{a_{4}}\left(a_{0}\right)\right)$ having the stacking property.

An advantage of theorem 9 is that it reduces the number of possible vertices through which a path of length 4 between a_{0} and $T_{a_{4}}\left(a_{0}\right)$ if it exists can pass.

Chapter 7

A PAIR OF DISTANCE 5 CURVES ON $\mathcal{C}\left(S_{2}\right)$

The work in this chapter is part of the preprint [16].
Let a_{0} and a_{4} be curves on S_{2} as in figure 1. These curves are at a distance 4 in $\mathcal{C}\left(S_{2}\right)$ and are taken from [5]. In this section we show that $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)=5$ by giving a geodesic between them. Let $b_{0}=a_{0}, b_{1}, b_{2}, b_{3}$ be curves on S_{2} as in figure 2 and b_{4} be as in figure 4. The juxtaposition of the curves in figure 2 and 4 shows that $b_{0}, b_{1}, b_{2}, b_{3}, b_{4}$ form a path of length 4 in $\mathcal{C}\left(S_{2}\right)$.

Since a_{0} and a_{4} fill S_{2}, we can give a schematic of S_{2} by giving the components of $S_{2} \backslash\left(a_{0} \cup a_{4}\right)$ as polygons whose vertices are the points of $a_{0} \cap a_{4}$ marked as in figure 1 and edges correspond to arcs of $a_{0} \backslash a_{4}$ or, $a_{4} \backslash a_{0}$. Figure 6a - 10 represent all polygons but the rectangle with vertices $10,9,4,5$ of $S \backslash\left(a_{0} \cup a_{4}\right)$. We give a juxtaposition of the curves b_{4} and $T_{a_{4}}\left(a_{0}\right)$ in minimal position on S_{2} by giving their arcs on the polygonal discs of $S \backslash\left(a_{0} \cup a_{4}\right)$. Since the representatives of b_{4} and $T_{a_{4}}\left(a_{0}\right)$ that we pick don't have any arcs in the rectangle of $S_{2} \backslash\left(a_{0} \cup a_{4}\right)$ with vertices $10,9,4,5$, we exclude this rectangles from the figures. In figure 6 a -10 , the straight lines correspond to the arcs of $T_{a_{4}}\left(a_{0}\right)$ and the dotted ones correspond to b_{4}. Since there is no intersection between these arcs, we conclude that b_{4} and $T_{a_{4}}\left(a_{0}\right)$ are at a distance 1 in S_{2}.

We now show that $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)>4$ by using lemma 9 . Consider the curves $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and γ_{4} as in figure 3 which are at a distance 1 from a_{4}. If for any $i_{0} \in\{1,2,3,4\}, T_{a_{4}}^{-1}(\delta) \cap \gamma_{i_{0}}=\phi$ then $a_{0}, T_{a_{4}}^{-1}(\delta), \gamma_{i_{0}}, a_{4}$ will form a path of length 3 , which is absurd. Thus, $d\left(T_{a_{4}}^{-1}(\delta), \gamma_{i}\right) \geq 2$ for $i=1,2,3,4$. Now, since $d\left(T_{a_{4}}^{-1}(\delta), a_{0}\right)=1$ and $T_{a_{4}}^{-1}(\delta) \cap a_{4} \neq \phi$, the arcs in the non-empty set $T_{a_{4}}^{-1}(\delta) \cap R_{a_{4}}$ are parallel to the arcs in $a_{0} \cap R_{a_{4}}$. Since, $T_{a_{4}}^{-1}(\delta) \cap \gamma_{i} \neq \phi$ for every $i=1,2,3,4$, we refer to figure 3 and observe that for any two possible consecutive arcs of $T_{a_{4}}^{-1}(\delta) \cap$ $R_{a_{4}}$ there are no stack of buckets between them. We note that we can circumvent

Figure 1

Figure 2
verifying the above for the set of all possible consecutive arcs of $T_{a_{4}}^{-1}(\delta) \cap R_{a_{4}}$ by looking at only the consecutive arcs of $T_{a_{4}}^{-1}(\delta) \cap R_{a_{4}}$ that has the maximum number of top buckets between them. Since the inside of a c is contained in some δ-track and the strands of δ that constitute the boundary of a δ-track are $T_{a_{4}}$-image of some arc of $T_{a_{4}}^{-1}(\delta)$ therefore, no c has the stacking property. Thus, $d\left(a_{0}, T_{a_{4}}\left(a_{0}\right)\right)>4$.

From the above discussion, we conclude that the path in $\mathcal{C}\left(S_{2}\right)$ comprising of vertices $b_{0}=a_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}=T_{a_{4}}\left(a_{0}\right)$ is a geodesic of length 5 in $\mathcal{C}\left(S_{2}\right)$. As an application of this example we give an upper bound on $i_{\min }(2,5)$ as follows :

Corollary 4. $i_{\min }(2,5) \leq 144$.
7. A PAIR OF DISTANCE 5 CURVES ON $\mathcal{C}\left(S_{2}\right)$

59

Figure 3. Regular neighbourhood of a_{4} with $a_{4} \cap a_{0}$ marked as in figure 1. The vertical arcs represent a_{0}.

Figure 5. R_{2}

Figure 6

(A) R_{4}

(в) R_{6}

Figure 7

Figure 8. H_{1}

Figure 10

BIBLIOGRAPHY

[1] A'Campo, N., Jı, L., and Papadopoulos, A. On the early history of moduli and Teichmüller spaces. 092015.
[2] Aougab, T. Uniform hyperbolicity of the graphs of curves. Geom. Topol. 17, 5 (2013), 2855-2875.
[3] Aougab, T., and Huang, S. Minimally intersecting filling pairs on surfaces. Algebr. Geom. Topol. 15, 2 (2015), 903-932.
[4] Aougab, T., and Taylor, S. J. Small intersection numbers in the curve graph. Bull. Lond. Math. Soc. 46, 5 (2014), 989-1002.
[5] Birman, J., Margalit, D., and Menasco, W. Efficient geodesics and an effective algorithm for distance in the complex of curves. Math. Ann. 366, 3-4 (2016), 1253-1279.
[6] Birman, J. S., Morse, M. J., and Wrinkle, N. C. Distance and intersection number in the curve graph of a surface. Geom. Dedicata 215 (2021), 161-189.
[7] Bowditch, B. H. Uniform hyperbolicity of the curve graphs. Pacific J. Math. 269, 2 (2014), 269-280.
[8] Clay, M., Rafi, K., and Schleimer, S. Uniform hyperbolicity of the curve graph via surgery sequences. Algebr. Geom. Topol. 14, 6 (2014), 3325-3344.
[9] Farb, B., and Margalit, D. A primer on mapping class groups, vol. 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.
[10] Glenn, P., Menasco, W. W., Morrell, K., and Morse, M. J. MiCC: a tool for computing short distances in the curve complex. J. Symbolic Comput. 78 (2017), 115-132.
[11] Harvey, W. J. Boundary structure of the modular group. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (1981), vol. 97 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., pp. 245-251.
[12] Hensel, S., Przytycki, P., and Webb, R. C. H. 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs. J. Eur. Math. Soc. (JEMS) 17, 4 (2015), 755-762.
[13] Ivanov, N. V. Automorphisms of complexes of curves and of Teichmüller spaces. In Progress in knot theory and related topics, vol. 56 of Travaux en Cours. Hermann, Paris, 1997, pp. 113120.
[14] Ivanov, N. V. Mapping class groups. In Handbook of geometric topology. North-Holland, Amsterdam, 2002, pp. 523-633.
[15] Leasure, J. P. Geodesics in the complex of curves of a surface. ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)-The University of Texas at Austin.
[16] Mahanta, K. Example of distance 5 curves on closed surfaces. arXiv:2211.15290, 2023.
[17] Mahanta, K., and Palaparthi, S. Distance 4 curves on closed surfaces of arbitrary genus. Topology Appl. 314 (2022), Paper No. 108137.
[18] Masur, H. A., and Minsky, Y. N. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138, 1 (1999), 103-149.
[19] Masur, H. A., and Minsky, Y. N. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10, 4 (2000), 902-974.
[20] McGonigle, E. Distance in the complex of curves. Master's thesis, School of Mathematics and Statistics, University of Glasgow, 2016.
[21] Minsky, Y. N. Curve complexes, surfaces and 3-manifolds. In International Congress of Mathematicians. Vol. II. Eur. Math. Soc., Zürich, 2006, pp. 1001-1033.
[22] Przytycki, P., and Sisto, A. A note on acylindrical hyperbolicity of mapping class groups. In Hyperbolic geometry and geometric group theory, vol. 73 of Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo, 2017, pp. 255-264.
[23] Royden, H. L. Automorphisms and isometries of Teichmüller space. In Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies, No. 66. , 1971, pp. 369-383.
[24] Shackleton, K. J. Tightness and computing distances in the curve complex. Geom. Dedicata 160 (2012), 243-259.
[25] Watanabe, Y. Intersection numbers in the curve graph with a uniform constant. Topology Appl. 204 (2016), 157-167.
[26] Webb, R. C. H. Combinatorics of tight geodesics and stable lengths. Trans. Amer. Math. Soc. 367, 10 (2015), 7323-7342.
[27] Webb, R. C. H. Uniform bounds for bounded geodesic image theorems. J. Reine Angew. Math. 709 (2015), 219-228.

